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•  Cherenkov radiation is emitted when a charged particle passed through a 
dielectric medium at a speed greater than wave phase velocity in that 
medium.

•  The condition for Cherenkov radiation is n>1/β  (n=kc/ω, β=v/c).
•  For plasma waves and runaway electrons (β~1), this condition is easy to 

satisfy. 
 

Introduction: Cherenkov radiation
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Introduction: Lenard-Balescu collision operator and 
Cherenkov radiation in plasmas

•  The polarization drag originates from the polarization of the plasma medium 
due to the electric field of a test particle, which is related to the Cherenkov 
radiation energy loss.
•  For ω/k~vth, the excited mode is strongly Landau damped and the energy 

is absorbed by bulk electrons.
•  For ω/k≫vth, the mode is weakly damped (mainly through collisions), and 

energy gets radiated away.
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Electron waves in unmagnetized plasma

•  In unmagnetized plasma, the electron waves have two branches 
(ignoring ion effects and thermal correction)

•   

•   

•  For Cherenkov radiation, only Langmuir wave is possible 
(n>1).
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The energy loss from Cherenkov radiation

•  To solve the energy loss due to Cherenkov radiation, one can 
calculate the excited electric field from a single moving electron in 
the medium.

•  The current from a single moving electron

•  The time-averaged electric field felt by the moving electron

•  The energy loss is then Ep·j.
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Cherenkov resonance 



Cherenkov radiation energy loss in unmagnetized 
plasma
•  For unmagnetized plasma

•  Assume electron is moving along z direction,

•  The principal value of the integral is imaginary, which will not contribute to 
the energy loss. 
•  However, the residues (which correspond to the modes that satisfy the 

Cherenkov radiation condition) will give real contribution and energy 
loss.
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Correction to Coulomb logarithm due to Cherenkov 
radiation loss
•  Using the residue theorem to calculate the integral

•  Note that we use the cold plasma approximation, so we can choose 
kmax=1/λD to ensure thermal effect is not important.
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Correction to lnΛ for the drag force

•  Recall that the drag force in the Landau collision operator due to binary 
collisions can be written as

•  Cherenkov radiation energy loss gives a correction to lnΛ

•  In DIII-D QRE experiments, for highly relativistic runaway electrons, this 
correction is about 20%.

•  For electron starting to run away (v≪c), this correction is small.
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Cherenkov radiation in magnetized plasma

•  The dielectric tensor and the dispersion relation in magnetized plasma 
(ignoring ions and thermal effects)

•  The allowed wave branches for Cherenkov radiation are: Langmuir wave, 
extraordinary-electron (EXEL) wave, and upper-hybrid wave (electrostatic 
Bernstein wave).
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Cherenkov radiation in magnetized plasma

•  The dielectric tensor and the dispersion relation in magnetized plasma 
(ignoring ions and thermal effects)

•  The allowed wave branches for Cherenkov radiation are: Langmuir wave, 
extraordinary-electron (EXEL) wave, and upper-hybrid wave (electrostatic 
Bernstein wave).
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Wave frequency for Cherenkov radiation

•  For a given emittance angle of k, one can calculate the wave 
frequency that satisfies the Cherenkov radiation condition.

•  For ωce~ωpe, one emittance angle gives one solution of ω, which 
shifts from ωpe to ωUH.
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•  For a given emittance angle of k, one can calculate the wave 
frequency that satisfies the Cherenkov radiation condition.

•  For ωce≫ωpe, there are 3 branches of ω roots, which all coexist in a 
range of emittance angle.

Wave frequency for Cherenkov radiation (cont’d)
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•  For a given emittance angle of k, one can calculate the wave 
frequency that satisfies the Cherenkov radiation condition.

•  For ωce≫ωpe, there are 3 branches of ω roots, which all coexist in a 
range of emittance angle.
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Cherenkov radiation energy loss in magnetized 
plasma
•  We can use the same method to calculate the Cherenkov radiation energy 

loss.
•  Assume that electron is moving perfectly along B field (no v⊥)

•  Although the radiation loss from
   small emittance angle (Langmuir) and
   large angle (Upper-hybrid) stays
   the same, intermediate angle (EXEL wave) gives additional energy  loss.
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Effects of 3 modes on Cerenkov radiation energy 
loss

•  All the 3 modes contributed to the Cherenkov radiation energy loss
•  For ωce≫ωpe, the radiation emittance is strongly peaked at certain 

angle. 
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Cherenkov radiation energy loss in magnetized 
plasma (cont’d)
•  The Coulomb logarithm in the drag force has a correction
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Transit-time magnetic pumping (TTMP) associated 
with Cherenkov radiation
•  Now we consider runaway electrons with finite v⊥.
•  In addition to electric field, gradient of magnetic field can also cause 

momentum loss in parallel direction

•  Note that for electron moving near the speed of light, the effect from 
the electric force (E) and Lorentz force (v×B/c) can be of similar 
order.
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Magnetic pumping: FTTMP = −µ∇Bz



TTMP momentum loss
•  From Faraday’s law, Bz=kx cEy/ω. So the TTMP force can be calculated similarly from Ey.

•  The ratio of TTMP over polarization electric
    force

•  For high energy regime where synchrotron radiation energy loss dominates, v⊥/c~1/γ, the effect 
of TTMP is small.
•  For high energy runaway electrons, synchrotron and Bremsstrahlung radiation dominate

•  With fast pitch angle scattering mechanism (different from collisional scattering) such as 
whistler wave, the effect can be more important.

22 

FTTMP =
µω ce

c2ω pe

ω pe
2

v2
ln v

vth

⎛
⎝⎜

⎞
⎠⎟
− 1
2
1− vth

v
⎛
⎝⎜

⎞
⎠⎟ + Δ3

⎡

⎣
⎢

⎤

⎦
⎥

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

ωce/ωpe

Δ 3

FTTMP
eE p ≈ γ v⊥

c
⎛
⎝⎜

⎞
⎠⎟
2



Outline
•  Introduction to Cherenkov radiation in plasma

•  Lenard-Balescu collision operator

• Cherenkov radiation in unmagnetized plasma
• Radiative energy loss
• Correction to Coulomb logarithm

• Cherenkov radiation in magnetized plasma
•  Transit-time magnetic pumping (TTMP) momentum loss

•  Summary

23 



Summary
•  Cherenkov radiation causes runaway electrons to lose energy, which can be 

described by adding a correction to the Coulomb logarithm in the drag force.
•  The correction is about 20% compared to collisional force in DIII-D QRE 

experiment

•  Magnetic field enhances Cherenkov radiation and energy loss.
•  For runaway electrons with finite v⊥, TTMP will cause momentum loss on 

parallel direction.

•  Future work:
•  Including thermal effect in the plasma wave description
•  Study the spiral orbit particle rather than straight orbit
•  Study the electric field fluctuation given by Cherenkov radiation
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Questions for discussion
1.  Can we detect the Cherenkov radiation from runaway electrons?

2.  What is the correct physics interpretation of Cherenkov resonance 
condition when collisional damping is considered?
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ω = k ⋅v
exp(ikx − iωt)

Imω < 0,Im k < 0 Wave is damping in time, but growing in space?
Imω > 0,Im k > 0 Wave is damping in space, but growing in time?
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