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The concept The implementation Relativistic conductivity Non-linear effects Summary

Motivation

• The more runaways, the
bigger the problem

• Existing tools break down
when more than a few %
runaways

• Such RE densities
obtainable in experiments

• Relativistic effects are not
always taken into account
properly

• Who says the tools are
correct, anyway?

• How does a multi-MeV tail
actually affect the rest of
the distribution?

One obvious solution...
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A non-linear solver!

Oh...and make it fully relativistic

• 2D in momentum space, no spatial
dependence

• Full Braams & Karney collision
operator

• Arbitrary electric field strengths
• Synchrotron radiation reaction
• Time-dependent plasma parameters

Generation
mechanisms:
• Dreicer
• Hot-tail
• Avalanche
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Proof of principle
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Complicating factors

How does one define
a momentum-space
runaway region when
the bulk is shifting?

Is the runaway
concept even
meaningful for strong
fields?

Is the avalanche
growth rate affected
by a moving (or even
just hot) bulk?
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Non-linearity: the e-e collision operator [Braams & Karney, PoF B 1, 1355 (1989)]

∂f
∂t −

eE
mec
· ∂f

∂p +
∂

∂p · (Fsf ) = Cee{f }+ Cei{f }+ S

• Non-linear because
• D and F depend on

potentials Υ−{f }, Υ+{f }
and Π{f }

• these depend on the
distribution

Cee{f } = α
∂

∂p ·
(

D · ∂f
∂p − Ff

)
D = γ−1 [LΥ− − (I + pp)Υ+]

F = γ−1KΠ

• Linearly implicit time
advance

• Potentials from current
distribution

• Normal linear system
• Time step needs to be

reasonably short

• Direct or iterative solver,
adaptive time step
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Numerical scheme

• Matlab (object oriented)
• Non-uniform 2D
finite-difference grid (p,ξ)

• Finite-difference–Legendre-
mode representation for
calculating potentials

• Efficient mapping between
these

• Nice conservation properties • Efficient (mostly matrix
operations)
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Benchmark: relativistic weak-field conductivity

• Braams & Karney list
conductivities

• weak-field
• large T range
• same collision

operator

• NORSE reproduces
these perfectly
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σ̄ : normalized conductivity
Θ = T /mec2
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Benchmark: conductivity in strong fields

• Comparison to Weng
et al. [PRL 100, 185001 (2008)]

• Strong fields, but
• Non-relativistic
• Nice agreement!

(Probably numerical heating in

Weng’s data for E/ED = 0.01)
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Distribution evolution
E/ED = 0.01
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Bulk heating

• E field is a source of
heat!

• Must be removed in a
linear treatment

• Automatically
accounted for in
NORSE

• In practice bulk keeps
temperature or even
cools – a heat sink is
useful

• Does the details of the
heat sink influence the
RE generation?

Yes, at least if it is "wide" enough
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Runaway region

• Analytic expressions for the
separatrix assume
Maxwellian bulk

• What to do when
distribution can be arbitrary?

• Consider force balance with
friction force taken from f

dp
dt = F p

E − F p
Cee
− F p

S

dξ

dt = F ξ
E − F ξ

Cee
− F ξ

S

• Integrate dp/dξ numerically

p
||

-0.06 -0.04 -0.02 0 0.02 0.04

p
⊥

0

0.01

0.02

0.03

0.04

0.05
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0.07

Isotropic FB

ξ-dep. FB
Linear traj.

Great! Let’s calculate the RE
growth rate for high fields!

Wait...not so fast!
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What is a runaway, anyway?

• As bulk distribution
smears, collisional
friction reduces

• Force balance is shifted

• Eventually sum of forces
positive everywhere

• slide away
• everything is in the

runaway region
• in essence: "effective"

ED is lowered by the
distortion of the
distribution

• also for weak fields!

• Is the runaway concept
even meaningful?

p||

-1.5 -1 -0.5 0 0.5 1 1.5

p
⊥

0

0.5

1

p||

0 0.5 1 1.5

-20

0

20

Sum of forces (ξ = 1)

• If bulk temperature kept constant:
• Weak fields: No (or significantly

delayed) transition to slide-away
• Strong fields: not possible

numerically to remove heat
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Summary

NORSE
• Relativistic, non-linear electron dynamics
• Radiative effects, time-dependent scenarios
• Efficient, freely available (soon)

Non-linear effects
• Large heating of bulk
• Dynamic runaway region must be used
• Distortion of distribution lowers ED

Outlook
• A few things left to add/polish
• Further investigations to come
• Feel free to use it!
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Kinetic equation

∂f
∂t −

eE
mec
· ∂f

∂p +
∂

∂p · (FSf ) = C{f }+ S

• FS: synchrotron radiation-reaction losses
• Cee: fully relativistic, non-linear Braams & Karney operator
with 5 relativistic potentials

• Cei: simple, stationary ion model (pitch-angle scattering only)
• CB: bremsstrahlung collisional losses
• S: knock-on, heat and particle sources
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Electron-electron collision operator

Cee{f } = α
∂

∂p ·
(

D · ∂f
∂p − Ff

)
[Braams & Karney, PoF B 1, 1355 (1989)]

D = γ−1 [LΥ− − (I + pp)Υ+]

LΥ− = (I + pp) · ∂2Υ−
∂p∂p · (I + pp)

+ (I + pp)
(
p · ∂Υ−

∂p

)
F = γ−1KΠ

KΠ = (I + pp) · ∂Π
∂p .

Υ− = 4Υ2 − Υ1 Υ+ = 4Υ2 + Υ1 Π = 2Π1 −Π0

L0Υ0 = f , L2Υ1 = Υ0, L2Υ2 = Υ1, L1Π0 = f , L1Π1 = Π0

LaΨ = (I + pp) :
∂2Ψ
∂p∂p + 3p · ∂Ψ

∂p +
(
1− a2

)
Ψ
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Electron-electron collision operator

Cee{f }
α

= W p2 ∂2f
∂p2 + W p ∂f

∂p + W ξ2 ∂2f
∂ξ2

+ W ξ ∂f
∂ξ

+ W pξ ∂2f
∂p∂ξ

+ W ff

W p2 = γ(8Υ2 − Υ0)− 2 γ3

p
∂Υ−
∂p − γ(1− ξ2)

p2
∂2Υ−
∂ξ2

+ 2 γξ

p2
∂Υ−
∂ξ

,

W p =
1

γp (2+ 3p2)(8Υ2 − Υ0)− 16γ
∂Υ2
∂p + 6γ

∂Υ1
∂p − γ

∂Υ0
∂p − 2 γ3

p

(
∂2Υ−
∂p2

+
1
p

∂Υ−
∂p

)

+
1

γp

(
2+ 1

p2

)(
2ξ

∂Υ−
∂ξ
− (1− ξ2)

∂2Υ−
∂ξ2

)
− γ

∂Π
∂p ,

W ξ2 =
1− ξ2

γp2

(
γ2

p
∂Υ−
∂p +

1
p2

[
(1− ξ2)

∂2Υ−
∂ξ2

− ξ
∂Υ−
∂ξ

]
− Υ+

)
,

W ξ = − ξ(1− ξ2)
γp4

∂2Υ−
∂ξ2

− 2 γ(1− ξ2)
p3

∂2Υ−
∂p∂ξ

− 2 γξ

p3
∂Υ−
∂p

+

(
2

γp4
+ 3 1− ξ2

γp2

)
∂Υ−
∂ξ
− 1− ξ2

γp2

(
4 ∂Υ2

∂ξ
− 3 ∂Υ1

∂ξ
+

∂Υ0
∂ξ

+
∂Π
∂ξ

)
+ 2 ξ

γp2
Υ+ ,

W pξ = 2 γ(1− ξ2)
p3

[
p ∂2Υ−

∂p∂ξ
− ∂Υ−

∂ξ

]
,

W f = −γ
∂2Π
∂p2

− 1
γp

(
2+ 3p2

) ∂Π
∂p −

1− ξ2

γp2
∂2Π
∂ξ2

+ 2 ξ

γp2
∂Π
∂ξ

.
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What about avalanche?

Avalanche operators assume cold bulks
• Is the avalanche growth rate affected by a moving (or even
just hot) bulk?

• Avalanche not important for very high fields, but
• Distribution is still eventually distorted, even at low fields

Future work!
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