

🖞 Home My Books Browse 🔻 Community 🔻

Search books

Greg van Eekhout

Want to Read

Rate this book

Norse Code

by Greg Van Eekhout (Goodreads Author)

★★★★★ 3.28 · ➡ Rating Details · 1,052 Ratings · 187 Reviews

Is this Ragnarok, or just California?

The NorseCODE genome project was designed to identify descendants of Odin. What it found was Kathy Castillo, a murdered MBA student brought back from the dead to serve as a valkyrie in the Norse god's army. Given a sword and a new name, Mist's job is to recruit soldiers for the war between the gods at the end of the world—and to kill th ...more

Paperback, 292 pages Published May 19th 2009 by Spectra (first published January 1st 2009) More Details...

edit details

Get a copy: Kindle eBook Amazon Online Stores V Libraries

Recommend It | Stats

READERS ALSO ENJOYED

NORSE

A non-linear relativistic solver for runaway dynamics

Adam Stahl

Matt Landreman, Ola Embréus, Tünde Fülöp

4th Runaway Electron Meeting Pertuis, France 2016-06-08

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary

2 The implementation

- **3** Relativistic conductivity
- **4** Non-linear effects

6 Summary

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Motivation

- The more runaways, the bigger the problem
- Existing tools break down when more than a few % runaways
- Such RE densities obtainable in experiments
- Relativistic effects are not always taken into account properly

The implementation 00

Relativistic conductivity

Non-linear effects

Summary 00

Motivation

- The more runaways, the bigger the problem
- Existing tools break down when more than a few % runaways
- Such RE densities obtainable in experiments
- Relativistic effects are not always taken into account properly

- Who says the tools are correct, anyway?
- How does a multi-MeV tail actually affect the rest of the distribution?

One obvious solution...

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
0000				

A non-linear solver!

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
0000				

A non-linear solver! Oh...and make it fully relativistic

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
0000				

A non-linear solver! Oh...and make it fully relativistic

- 2D in momentum space, no spatial dependence
- Full Braams & Karney collision operator
- Arbitrary electric field strengths
- Synchrotron radiation reaction
- Time-dependent plasma parameters

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
0000				

A non-linear solver!

Oh...and make it fully relativistic

- 2D in momentum space, no spatial dependence
- Full Braams & Karney collision operator
- Arbitrary electric field strengths
- Synchrotron radiation reaction
- Time-dependent plasma parameters

Generation mechanisms:

- Dreicer
- Hot-tail
- Avalanche

The concept 00●0

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

CHALMERS

UNIVERSITY OF TECHNOLOGY

Proof of principle

The concept 00●0

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Proof of principle

7/21

The concept 000● The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Complicating factors

How does one define a momentum-space runaway region when the bulk is shifting?

Is the runaway concept even meaningful for strong fields? Is the avalanche growth rate affected by a moving (or even just hot) bulk?

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Outline

1 The concept

2 The implementation

- **3** Relativistic conductivity
- 4 Non-linear effects
- **5** Summary

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
	•0			

Non-linearity: the e-e collision operator [Braams & Karney, PoF B 1, 1355 (1989)]

$$\frac{\partial f}{\partial t} - \frac{e\mathbf{E}}{m_{\rm e}c} \cdot \frac{\partial f}{\partial \mathbf{p}} + \frac{\partial}{\partial \mathbf{p}} \cdot (\mathbf{F}_{\rm s}f) = C_{\rm ee}\{f\} + C_{\rm ei}\{f\} + S$$

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
	0			

Non-linearity: the e-e collision operator [Braams & Karney, PoF B 1, 1355 (1989)]

$$\frac{\partial f}{\partial t} - \frac{e\mathbf{E}}{m_{\rm e}c} \cdot \frac{\partial f}{\partial \mathbf{p}} + \frac{\partial}{\partial \mathbf{p}} \cdot (\mathbf{F}_{\rm s}f) = C_{\rm ee}\{f\} + C_{\rm ei}\{f\} + S$$

- Non-linear because
 - D and F depend on potentials Y_−{f}, Y₊{f} and Π{f}
 - these depend on the distribution

$$C_{ee}{f} = \alpha \frac{\partial}{\partial \mathbf{p}} \cdot \left(\mathbb{D} \cdot \frac{\partial f}{\partial \mathbf{p}} - \mathbf{F}f \right)$$
$$\mathbb{D} = \gamma^{-1} \left[\mathbb{L}Y_{-} - (\mathbb{I} + \mathbf{p}\mathbf{p})Y_{+} \right]$$
$$\mathbf{F} = \gamma^{-1}\mathbf{K}\Pi$$

The concept	The implementation	Relativistic conductivity	Non-linear effects	Summary
	••			

Non-linearity: the e-e collision operator [Braams & Karney, PoF B 1, 1355 (1989)]

$$\frac{\partial f}{\partial t} - \frac{e\mathbf{E}}{m_{\rm e}c} \cdot \frac{\partial f}{\partial \mathbf{p}} + \frac{\partial}{\partial \mathbf{p}} \cdot (\mathbf{F}_{\rm s}f) = C_{\rm ee}\{f\} + C_{\rm ei}\{f\} + S$$

- Non-linear because
 - D and F depend on potentials Y_−{f}, Y₊{f} and Π{f}
 - these depend on the distribution
- Linearly implicit time advance
 - Potentials from current distribution
 - Normal linear system
 - Time step needs to be reasonably short

$$C_{ee}{f} = \alpha \frac{\partial}{\partial \mathbf{p}} \cdot \left(\mathbb{D} \cdot \frac{\partial f}{\partial \mathbf{p}} - \mathbf{F}f \right)$$
$$\mathbb{D} = \gamma^{-1} \left[\mathbb{L}Y_{-} - (\mathbb{I} + \mathbf{p}\mathbf{p})Y_{+} \right]$$
$$\mathbf{F} = \gamma^{-1}\mathbf{K}\Pi$$

• Direct or iterative solver, adaptive time step

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Numerical scheme

- Matlab (object oriented)
- Non-uniform 2D finite-difference grid (*p*,ξ)
- Finite-difference-Legendremode representation for calculating potentials
- Efficient mapping between these

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Numerical scheme

- Matlab (object oriented)
- Non-uniform 2D finite-difference grid (*p*,ξ)
- Finite-difference-Legendremode representation for calculating potentials
- Efficient mapping between these

• Efficient (mostly matrix operations)

The implementation 00 Relativistic conductivity

Non-linear effects

Summary 00

Outline

1 The concept

2 The implementation

3 Relativistic conductivity

4 Non-linear effects

5 Summary

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Benchmark: relativistic weak-field conductivity

- Braams & Karney list conductivities
 - weak-field
 - large T range
 - same collision operator

Benchmark: relativistic weak-field conductivity

- Braams & Karney list conductivities
 - weak-field
 - large T range
 - same collision operator
- NORSE reproduces these perfectly

 $\bar{\sigma}:$ normalized conductivity

 $\Theta = T/m_{\rm e}c^2$

The implementation

Relativistic conductivity

Non-linear effects

Summary 00

Outline

1 The concept

- **2** The implementation
- **3** Relativistic conductivity
- 4 Non-linear effects

5 Summary

The concept	The implementation	Relativistic conductivity	Non-linear effects	
			00000	
_			.	

Benchmark: conductivity in strong fields

- Comparison to Weng et al. [PRL 100, 185001 (2008)]
- Strong fields, but
- Non-relativistic
- Nice agreement!

(Probably numerical heating in

Weng's data for $E/E_{\rm D}=0.01$)

 \bar{j}/\hat{E} : normalized conductivity $\hat{E}\tau/\sqrt{\Theta}$: normalized time

The implementation

Relativistic conductivity

Non-linear effects ○●○○○ Summary 00

Distribution evolution

The implementation

Relativistic conductivity

G,

Non-linear effects ○●○○○ Summary 00

Distribution evolution

The implementation

Relativistic conductivity

-5

-10

-15

Non-linear effects ○●○○○ Summary 00

Distribution evolution

16/21

he	concept	

Relativistic conductivity

Non-linear effects

Summary 00

- *E* field is a source of heat!
 - Must be removed in a linear treatment
 - Automatically accounted for in NORSE
- In practice bulk keeps temperature or even cools – a heat sink is useful

he	concept	

Relativistic conductivity

Non-linear effects

Summary 00

- *E* field is a source of heat!
 - Must be removed in a linear treatment
 - Automatically accounted for in NORSE
- In practice bulk keeps temperature or even cools – a heat sink is useful

he	concept	

Relativistic conductivity

Non-linear effects

Summary 00

- *E* field is a source of heat!
 - Must be removed in a linear treatment
 - Automatically accounted for in NORSE
- In practice bulk keeps temperature or even cools – a heat sink is useful

he	concept	

Relativistic conductivity

Non-linear effects

Summary 00

- *E* field is a source of heat!
 - Must be removed in a linear treatment
 - Automatically accounted for in NORSE
- In practice bulk keeps temperature or even cools – a heat sink is useful
- Does the details of the heat sink influence the RE generation?

he	concept	

Relativistic conductivity

Non-linear effects

Summary 00

Bulk heating

- *E* field is a source of heat!
 - Must be removed in a linear treatment
 - Automatically accounted for in NORSE
- In practice bulk keeps temperature or even cools – a heat sink is useful
- Does the details of the heat sink influence the RE generation?

Yes, at least if it is "wide" enough

Τh		n	b.	

Relativistic conductivity

Non-linear effects

Summary 00

Runaway region

- Analytic expressions for the separatrix assume Maxwellian bulk
- What to do when distribution can be arbitrary?

he	со	nc	e	pt	

Relativistic conductivity

Non-linear effects

Summary 00

Runaway region

- Analytic expressions for the separatrix assume Maxwellian bulk
- What to do when distribution can be arbitrary?
- Consider force balance with friction force taken from *f*

$$\frac{\mathrm{d}p}{\mathrm{d}t} = F_{\mathsf{E}}^{p} - F_{C_{ee}}^{p} - F_{\mathsf{S}}^{p}$$
$$\frac{\mathrm{d}\xi}{\mathrm{d}t} = F_{\mathsf{E}}^{\xi} - F_{C_{ee}}^{\xi} - F_{\mathsf{S}}^{\xi}$$

• Integrate $dp/d\xi$ numerically

he	ce	pt

Relativistic conductivity

Non-linear effects

Summary 00

Runaway region

- Analytic expressions for the separatrix assume Maxwellian bulk
- What to do when distribution can be arbitrary?
- Consider force balance with friction force taken from *f*

$$\frac{\mathrm{d}p}{\mathrm{d}t} = F_{\mathsf{E}}^{p} - F_{C_{ee}}^{p} - F_{\mathsf{S}}^{p}$$
$$\frac{\mathrm{d}\xi}{\mathrm{d}t} = F_{\mathsf{E}}^{\xi} - F_{C_{ee}}^{\xi} - F_{\mathsf{S}}^{\xi}$$

• Integrate $dp/d\xi$ numerically

he	со	е	pt	

Relativistic conductivity

Non-linear effects

Summary 00

Runaway region

- Analytic expressions for the separatrix assume Maxwellian bulk
- What to do when distribution can be arbitrary?
- Consider force balance with friction force taken from *f*

$$\frac{\mathrm{d}p}{\mathrm{d}t} = F_{\mathsf{E}}^{p} - F_{C_{ee}}^{p} - F_{\mathsf{S}}^{p}$$
$$\frac{\mathrm{d}\xi}{\mathrm{d}t} = F_{\mathsf{E}}^{\xi} - F_{C_{ee}}^{\xi} - F_{\mathsf{S}}^{\xi}$$

• Integrate $dp/d\xi$ numerically

Great! Let's calculate the RE growth rate for high fields!

he	со	е	pt	

Relativistic conductivity

Non-linear effects

Summary 00

Runaway region

- Analytic expressions for the separatrix assume Maxwellian bulk
- What to do when distribution can be arbitrary?
- Consider force balance with friction force taken from *f*

$$\frac{\mathrm{d}p}{\mathrm{d}t} = F_{\mathsf{E}}^{p} - F_{C_{ee}}^{p} - F_{\mathsf{S}}^{p}$$
$$\frac{\mathrm{d}\xi}{\mathrm{d}t} = F_{\mathsf{E}}^{\xi} - F_{C_{ee}}^{\xi} - F_{\mathsf{S}}^{\xi}$$

• Integrate $dp/d\xi$ numerically

Great! Let's calculate the RE growth rate for high fields!

Wait...not so fast!

The implementation 00

Relativistic conductivity

Non-linear effects

Summary 00

- As bulk distribution smears, collisional friction reduces
- Force balance is shifted

The implementation 00

Relativistic conductivity

Non-linear effects

Summary 00

- As bulk distribution smears, collisional friction reduces
- Force balance is shifted
- Eventually sum of forces positive everywhere
 - slide away
 - everything is in the runaway region
 - in essence: "effective" *E*_D is lowered by the distortion of the distribution

The implementation 00

Relativistic conductivity o Non-linear effects

Summary 00

- As bulk distribution smears, collisional friction reduces
- Force balance is shifted
- Eventually sum of forces positive everywhere
 - slide away
 - everything is in the runaway region
 - in essence: "effective" *E*_D is lowered by the distortion of the distribution

The implementation 00

Relativistic conductivity o Non-linear effects

Summary 00

- As bulk distribution smears, collisional friction reduces
- Force balance is shifted
- Eventually sum of forces positive everywhere
 - slide away
 - everything is in the runaway region
 - in essence: "effective"
 *E*_D is lowered by the distortion of the distribution
 - also for weak fields!

The implementation 00

Relativistic conductivity 0 Non-linear effects

Summary 00

- As bulk distribution smears, collisional friction reduces
- Force balance is shifted
- Eventually sum of forces positive everywhere
 - slide away
 - everything is in the runaway region
 - in essence: "effective" *E*_D is lowered by the distortion of the distribution
 - also for weak fields!
- Is the runaway concept even meaningful?

The implementation 00

Relativistic conductivity o Non-linear effects

Summary 00

- As bulk distribution smears, collisional friction reduces
- Force balance is shifted
- Eventually sum of forces positive everywhere
 - slide away
 - everything is in the runaway region
 - in essence: "effective" *E*_D is lowered by the distortion of the distribution
 - also for weak fields!
- Is the runaway concept even meaningful?

- If bulk temperature kept constant:
 - Weak fields: No (or significantly delayed) transition to slide-away
 - Strong fields: not possible numerically to remove heat

The implementation

Relativistic conductivity

Non-linear effects

Summary

Outline

1 The concept

- **2** The implementation
- 8 Relativistic conductivity
- 4 Non-linear effects

6 Summary

Т	h	со		ep	
	0				

Relativistic conductivity

Non-linear effects

Summary ●0

Summary

NORSE

- Relativistic, non-linear electron dynamics
- Radiative effects, time-dependent scenarios
- Efficient, freely available (soon)

Non-linear effects

- Large heating of bulk
- Dynamic runaway region must be used
- Distortion of distribution lowers $E_{\rm D}$

Outlook

- A few things left to add/polish
- Further investigations to come
- Feel free to use it!

Spare slides

$$\frac{\partial f}{\partial t} - \frac{e\mathbf{E}}{m_{\rm e}c} \cdot \frac{\partial f}{\partial \mathbf{p}} + \frac{\partial}{\partial \mathbf{p}} \cdot (\mathbf{F}_{\rm S}f) = C\{f\} + S$$

- F_S: synchrotron radiation-reaction losses
- C_{ee}: fully relativistic, non-linear Braams & Karney operator with 5 relativistic potentials
- C_{ei}: simple, stationary ion model (pitch-angle scattering only)
- C_B: bremsstrahlung collisional losses
- S: knock-on, heat and particle sources

Electron-electron collision operator

$$C_{\rm ee}{f} = \alpha \frac{\partial}{\partial \mathbf{p}} \cdot \left(\mathbb{D} \cdot \frac{\partial f}{\partial \mathbf{p}} - \mathbf{F}f \right)$$

[Braams & Karney, PoF B 1, 1355 (1989)]

$$\mathbb{D} = \gamma^{-1} \left[\mathbb{L} Y_{-} - (\mathbb{I} + \mathbf{p}\mathbf{p}) Y_{+} \right] \qquad \qquad \mathbf{F} = \gamma^{-1} \mathbf{K} \Pi$$

$$\begin{split} \mathbb{L}Y_{-} &= (\mathbb{I} + \mathbf{p}\mathbf{p}) \cdot \frac{\partial^{2}Y_{-}}{\partial \mathbf{p}\partial \mathbf{p}} \cdot (\mathbb{I} + \mathbf{p}\mathbf{p}) \qquad \qquad \mathbf{K}\Pi = (\mathbb{I} + \mathbf{p}\mathbf{p}) \cdot \frac{\partial\Pi}{\partial \mathbf{p}}. \\ &+ (\mathbb{I} + \mathbf{p}\mathbf{p}) \left(\mathbf{p} \cdot \frac{\partial Y_{-}}{\partial \mathbf{p}}\right) \\ &Y_{-} &= 4Y_{2} - Y_{1} \qquad Y_{+} = 4Y_{2} + Y_{1} \qquad \Pi = 2\Pi_{1} - \Pi_{0} \\ &L_{0}Y_{0} &= f, \quad L_{2}Y_{1} = Y_{0}, \quad L_{2}Y_{2} = Y_{1}, \quad L_{1}\Pi_{0} = f, \quad L_{1}\Pi_{1} = \Pi_{0} \\ &L_{a}\Psi = (\mathbb{I} + \mathbf{p}\mathbf{p}) : \frac{\partial^{2}\Psi}{\partial \mathbf{p}\partial \mathbf{p}} + 3\mathbf{p} \cdot \frac{\partial\Psi}{\partial \mathbf{p}} + (1 - a^{2}) \Psi \end{split}$$

Electron-electron collision operator

$$\begin{split} \frac{C_{\text{ee}}\left\{f\right\}}{\alpha} &= W^{p^{2}} \frac{\partial^{2} f}{\partial p^{2}} + W^{p} \frac{\partial f}{\partial p} + W^{\xi^{2}} \frac{\partial^{2} f}{\partial \xi^{2}} + W^{\xi} \frac{\partial f}{\partial \xi} + W^{p\xi} \frac{\partial^{2} f}{\partial \rho \partial \xi} + W^{f} f \\ W^{p^{2}} &= \gamma(8Y_{2} - Y_{0}) - 2\frac{\gamma^{3}}{\rho} \frac{\partial Y_{-}}{\partial p} - \frac{\gamma(1 - \xi^{2})}{\rho^{2}} \frac{\partial^{2} Y_{-}}{\partial \xi^{2}} + 2\frac{\gamma\xi}{\rho^{2}} \frac{\partial Y_{-}}{\partial \xi}, \\ W^{p} &= \frac{1}{\gamma p} (2 + 3p^{2})(8Y_{2} - Y_{0}) - 16\gamma \frac{\partial Y_{2}}{\partial p} + 6\gamma \frac{\partial Y_{1}}{\partial p} - \gamma \frac{\partial Y_{0}}{\partial p} - 2\frac{\gamma^{3}}{\rho} \left(\frac{\partial^{2} Y_{-}}{\partial p^{2}} + \frac{1}{\rho} \frac{\partial Y_{-}}{\partial p}\right) \\ &+ \frac{1}{\gamma p} \left(2 + \frac{1}{p^{2}}\right) \left(2\xi \frac{\partial Y_{-}}{\partial \xi} - (1 - \xi^{2}) \frac{\partial^{2} Y_{-}}{\partial \xi^{2}}\right) - \gamma \frac{\partial \Pi}{\partial p}, \\ W^{\xi^{2}} &= \frac{1 - \xi^{2}}{\gamma p^{2}} \left(\frac{\gamma^{2}}{p} \frac{\partial Y_{-}}{\partial p} + \frac{1}{p^{2}} \left[(1 - \xi^{2}) \frac{\partial^{2} Y_{-}}{\partial \xi^{2}} - \xi \frac{\partial Y_{-}}{\partial \xi}\right] - Y_{+}\right), \\ W^{\xi} &= -\frac{\xi(1 - \xi^{2})}{\gamma p^{4}} \frac{\partial^{2} Y_{-}}{\partial \xi^{2}} - 2\frac{\gamma(1 - \xi^{2})}{p^{3}} \frac{\partial^{2} Y_{-}}{\partial \rho \partial \xi} - 2\frac{\gamma\xi}{\rho^{3}} \frac{\partial Y_{-}}{\partial \rho} \\ &+ \left(\frac{2}{\gamma p^{4}} + 3\frac{1 - \xi^{2}}{\gamma p^{2}}\right) \frac{\partial Y_{-}}{\partial \xi} - \frac{1 - \xi^{2}}{\gamma p^{2}} \left(4\frac{\partial Y_{2}}{\partial \xi} - 3\frac{\partial Y_{1}}{\partial \xi} + \frac{\partial Y_{0}}{\partial \xi}\right) + 2\frac{\xi}{\gamma p^{2}} Y_{+}, \\ W^{p\xi} &= 2\frac{\gamma(1 - \xi^{2})}{p^{3}} \left[p\frac{\partial^{2} Y_{-}}{\partial \rho \partial \xi} - \frac{\partial Y_{-}}{\partial \xi}\right], \\ W^{f} &= -\gamma \frac{\partial^{2} \Pi}{\partial p^{2}} - \frac{1}{\gamma p} \left(2 + 3p^{2}\right) \frac{\partial \Pi}{\partial p} - \frac{1 - \xi^{2}}{\gamma p^{2}} \frac{\partial^{2} \Pi}{\partial \xi^{2}} + 2\frac{\xi}{\gamma p^{2}} \frac{\partial \Pi}{\partial \xi}. \end{split}$$

25

UNIVERSITY OF TECHNOLOGY

26/21

Avalanche operators assume cold bulks

- Is the avalanche growth rate affected by a moving (or even just hot) bulk?
- Avalanche not important for very high fields, but
- Distribution is still eventually distorted, even at low fields

Future work!

