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Runaway electrons are a potential threat in many plasma devices. At high velocities, the plasma acceleration
is not further offset by collisions in the plasma, as in the ohmic regime. The particles obtain relativistic
velocity and considerable energy. A typical configuration includes parallel electric and magnetic fields, in
which there are no drifts, and the movement of the charged particles is a combination of gyration motion
with the acceleration in an electric field. It follows from the Lorentz equation of motion that the transverse
velocity component (perpendicular to the fields) will be interconnected with the longitudinal component
via the Lorentz factor. The increasing longitudinal velocity will therefore ultimately reduce the magnitude
of the transverse velocity component, thereby decreasing the gyrofrequency. The corresponding change in
Larmor radius will be offset by the increase in the particle mass and the Larmor radius of gyration therefore
remains unchanged. We derive analytical relations for the temporal and spatial dependences of frequency,
and longitudinal and transverse components of the velocity.
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I. INTRODUCTION

The interaction of the charged particle beam (for def-
initeness we consider electrons) with the Maxwellian
plasma target in the presence of an electric field leads un-
der normal conditions to a balance between collision and
accelerating processes. If the speed is slightly increased
above the equilibrium rate, the collision frequency will be
higher, and the velocity of the electron returns to its orig-
inal value. Conversely, when the speed of the electron is
reduced randomly, the collision frequency decreases, ac-
celeration prevails, and the velocity of the electron will
again return to its original value. This equilibrium is
called the ohmic regime. It can be derived from the
Fokker-Planck equation, that there are two possible ways
to disrupt the ohmic regime: 1) increasing the electric
field above the critical limit called Dreicer field; 2) in-
creasing the speed above the critical value.1–3 In both
cases an acceleration which is not sufficiently offset by
collision processes prevails and the electron falls into the
so-called Runaway mode.

Runaway Electrons (RE) originate in both space
and laboratory plasmas.4–6 They can cause considerable
problems in both cases. One of the examples in nearby
plasma are Van Allen radiation belts, in which the RE
population is a potential threat for the devices as well as
for the astronauts. Runaway electrons in laboratory plas-
mas can have a negative impact on various technologies;
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recently they have become a worrisome threat for larger
tokamaks including the recently built ITER tokamak.7,8

Runaway electrons can gain considerable energy, which
is subsequently lost through many channels, such as
bremsstrahlung radiation,9 synchrotron radiation,10 cre-
ation of electron-positron pairs,11,12 and collisions with
surrounding plasma, which may lead to an avalanche
effect.13 Today’s physicists have limited knowledge about
the formation of runaway electrons and about their future
fate. At present there is no known consistent equation of
motion that would describe the motion of charged par-
ticles, including its reaction to the own radiation field.
The Lorenz-Dirac equation (including its low energetic
limit, the Abraham-Lorenz equation) has a number of
problems.14 The presence of the third time derivative
of positions leads to unclear initial conditions, some so-
lutions grow exponentially even if no force is present,
and some solutions are not causal in the sense that at
any given time they depend on the value of force in the
future. These problems are partially solved by expan-
sion in a series that artificially suppresses the unwanted
solutions.15,16

We will concentrate on the movement of charged par-
ticle in runaway regime (with negligible collisions), in
parallel electric and magnetic fields, described by the
Lorentz equation of motion. Such configuration does not
lead to drifts and is therefore ideal for investigation of
motion at speeds comparable to the speed of light (of
course, knowing that this description does not include the
reaction of the particle to its own radiation field). We will
show that useful analytic expressions for Larmor radius,

mailto:kulhanek@fel.cvut.cz


2

gyrofrequency, and the longitudinal and transverse veloc-
ity components can be derived from the Lorentz equation
of motion.
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FIG. 1. Forces acting on the electron. The dashed line rep-
resents the dependence of the collision force on the particle
speed, and the dotted line represents the acceleration force.
If the field is lower than corresponds to the maximum of the
dashed curve (Dreicer field), there are two possibilities: the
electron can either be in the ohmic regime (regions I and II),
or in the Runaway mode (region III).

II. LARMOR (CYCLOTRON) RADIUS

Let us use Cartesian coordinates, in which both fields
point along the z axis, i.e.

B = (0, 0, B) , (1)

E = (0, 0, E) . (2)

The Lorentz equation of motion

d

dt
(γm0v) = Q (E + v ×B) (3)

leads to a system of equations

d

dt
(γ vx) = ωcvy ,

d

dt
(γ vy) = −ωcvx , (4)

d

dt
(γ vz) =

QE

m0
.

The first two equations are linked to the third by the
Lorenz factor

γ =
1√

1− (v2x + v2y + v2z)/c2
(5)

Let us suppose that γ is any at least once continuously
differentiable function of time with domain (0; c) and
with range (1;∞). We will consider for the moment only

the first two equations, thus we will deal with the trans-
verse (⊥) projection of the motion to the (x, y) plane
perpendicular on both fields. Let us introduce a vector

K⊥ ≡
d

dt
(γ v⊥) = (ωcvy,−ωcvx) . (6)

Differentiating yields

K⊥ ≡ γ̇v⊥ + γa⊥ (7)

from where we express the perpendicular acceleration (in
transverse plane)

a⊥ =
K⊥
γ
− γ̇

γ
v⊥ (8)

which is a superposition of two vectors

a1 = − γ̇
γ
v⊥ , (9)

a2 =
K⊥
γ

. (10)

The first vector points in the direction of the projection
of the trajectory into the transverse plane (is collinear to
v⊥), and the second vector is perpendicular to the first
because

a1 · a2 ∝ v⊥ ·K⊥ = vx · ωcvy − vy · ωcvx = 0 . (11)

The second vector is thus perpendicular to the trajectory
projection into the transverse plane and represents the
centripetal acceleration. With its help we can calculate
the osculating circle radius of curvature

R =
v2⊥
|a2|

=
v2⊥

|ωc|
γ

√
v2x + v2y

=
γ v⊥
|ωc|

. (12)

We now show that the osculating circle radius of curva-
ture of the trajectory projection into the transverse plane
is constant and therefore the projection is, in fact, iden-
tical to circular motion. It is sufficient to show that

d

dt
(γv⊥) = 0 . (13)

We define a vector

u⊥ ≡ γv⊥. (14)

Proof of the aforementioned statement is now relatively
straightforward:

d

dt
(γv⊥) =

d

dt
u⊥ =

d

dt

√
u2x + u2y =

u⊥ · u̇⊥
u⊥

.

It now follows clearly from Eq. (6) that

du⊥
dt

= K⊥ , (15)
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and so

d

dt
(γv⊥) ∝ u⊥ ·K⊥ = (γvx, γvy) · (ωcvy,−ωcvx) = 0 .

(16)
This shows that the trajectory projection is indeed a cir-
cular motion with the Larmor radius given by the expres-
sion (12)

RL =
γ v⊥
|ωc|

. (17)

We can re-write the expression using individual compo-
nents of the velocity (vr = 0, therefore v⊥ = vϕ)

RL =
vϕ

|ωc|
√

1− (v2ϕ + v2z)/c2
. (18)

Increase of the parallel velocity component caused by the
electric field acceleration is compensated by the decrease
of the azimuthal velocity component. Because of this the
Larmor radius remains constant. For future reference, let
us write down the Larmor gyroradius (17) via the initial
conditions:

RL =
u0
|ωc|

; , (19)

u0 ≡
vϕ0√

1− (v2ϕ0 + v2z0)/c2
. (20)

III. DEPENDENCE OF THE VELOCITY
COMPONENTS ON TIME

From the last, thus far neglected, part of the equation
of motion (4), it follows that

γvz =
QE

m0
(t− t0) , (21)

where t0 is the time coordinate in past, when the parallel
velocity component is zero. It holds for a trajectory with
fixed Larmor radius that

γ =
1√

1− (v2ϕ + v2z)/c2
. (22)

From the system of equations (18), (21), and (22) we can,
after some straightforward manipulations, calculate the
time dependencies

vϕ(τ) =
u0√

1 + u20/c
2

1√
1 + τ2

,

vz(τ) =
c√

1 + τ−2
, (23)

γ(τ) =
√

1 + u20/c
2
√

1 + τ2 .

where we expressed the Larmor radius using Eq. (19)
and with τ denoting the dimensionless time interval cal-
culated from the point corresponding to t0:

τ ≡ t− t0
m0c
QE

√
1 + u20/c

2
. (24)
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FIG. 2. Parallel velocity component increases with time and
in the limit approaches the speed of light. Transverse (angu-
lar) velocity component conversely decreases (different curves
correspond to different initial conditions). Radial component
is zero. Dimensionless time τ is defined using formula (24).

Decrease of the angular velocity component is con-
nected to the decrease of the gyrofrequency according
to the formula

ω(τ) = ϕ̇ =
vϕ
RL

=
1√

1 + u20/c
2

ωc√
1 + τ2

. (25)

IV. DEPENDENCE OF THE VELOCITY
COMPONENTS ON SPACE

Let us assume the Lagrangian function of the charged
particle motion in the form

L = −m0c
2

√
1− v2

c2
−Qφ+Q A · v . (26)

In the Cartesian coordinate system the corresponding po-
tentials will be

φ = −Ez , (27)

A =
1

2
r×B =

1

2
(yB,−xB, 0) . (28)

In cylindrical coordinates the vector potential will have
only one nonzero component

Aϕ =
1

2
rB (29)

and the Lagrangian function will take the form

L = −m0c
2

√
1− ṙ2 + r2ϕ̇2 + ż2

c2
+QEz +

1

2
Qr2B ϕ̇ .

(30)
The Lagrangian function does not explicitly depend on
time nor on the azimuthal angle, and that is why the
energy and the angular momentum given by formulas

W =
∂L

∂q̇k
q̇k = m0γc

2 −QEz , (31)

b =
∂L

∂ϕ̇
= m0γr

2ϕ̇+
1

2
Qr2B , (32)
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FIG. 3. Longitudinal and azimuthal velocity space depen-
dence for different initial conditions of the azimuthal velocity
component. An increase of the longitudinal velocity com-
ponent is accompanied with the decrease of the azimuthal
velocity component. Dimensionless variable ς represent space
variable measured along the field and is defined using formula
(35).

will be conserved. The Lorentz factor γ is defined as

γ =
1√

1− (ṙ2 + r2ϕ̇2 + ż2)/c2
. (33)

From the set of equations (31), (32) and (33) can be cal-
culated (considering initial conditions and constant Lar-
mor radius)

vϕ(ς) =
u0
γ(ς)

,

vz(ς) = c

√
1− 1 + u20/c

2

γ2(ς)
, (34)

γ(ς) = γ0 + ς ,

where the dimensionless spatial coordinate in the field
direction was denoted as

ς ≡ QEz

m0c2
. (35)

Angular gyrofrequency decreases with longitudinal co-
ordinate according to

ω(ς) = ϕ̇ =
vϕ
RL

=
ωc

γ(ς)
. (36)

V. CONCLUSION

In the case of parallel electric and magnetic fields it
was shown from the Lorentz equation of motion that the

acceleration in the direction of an electric field will lead
to the decrease of azimuthal velocity and gyrofrequency
of the charged particle. It was proved that the corre-
sponding change in Larmor radius will be offset by the
increase in the particle mass and the Larmor radius of
gyration therefore remains unchanged even if the veloc-
ity is approaching the speed of light. If particle velocity
increases in the direction of the electric field, both par-
ticle frequency and gyrofrequency decrease in the limit
to zero. For velocity components and gyrofrequency an-
alytical space and time dependencies were found. These
solutions can be useful for further analysis of unsolved
runaway electron problems.
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