Logo ČVUT

PLANCKOVA KONSTANTA – KE ČTENÍ

 Energie

 Experimenty, které vedly ke kvantové teorii

Na přelomu 19. a 20. století se vyrojila řada experimentů, které nebylo možné vysvětlit pomocí stávajících teorií. Všechny postupně vedly k pádu klasické fyziky a vzniku kvantové mechaniky a později kvantové teorie. Připomeňme si některé z nich.

Existence atomu. Poté, co Ernest Rutherford (1871–1937) objevil atomové jádro, se fyzikové začali dohadovat, jakým způsobem obíhá elektron kolem tohoto jádra. Věc není tak jednoduchá, jak by se na první pohled zdálo. Představme si, že elektron krouží kolem jádra obdobně jako planeta kolem Slunce. Elektron je ale nabitá částice a při jejím pohybu vzniká magnetické pole. Toto pole bude proměnné s časem a podle klasické elektrodynamiky musí také vzniknout proměnné elektrické pole. Výsledkem je, že elektron kroužící kolem jádra musí vyzařovat elektromagnetické vlny a ztrácet energii. Pohyb se bude ve skutečnosti konat po spirále a elektron po určité době spadne na jádro. Orientační výpočty ukázaly již na počátku 20. století, že k tomu dojde již cca za 10−10 s. Podle klasické elektrodynamiky by tedy atomy neměly vůbec existovat, neboť elektrony v obalech velmi rychle popadají na jádra. Použití klasických teorií vede k zjevnému nesouhlasu s realitou.

Spektrální čáry. Spektrální čáry byly objeveny již velmi dávno. Jako první je pozoroval William Wollaston (1766–1828) v roce 1802 a znovu je ve slunečním spektru objevil Joseph Fraunhofer (1787–1826) v roce 1817. Jejich podstata zůstala neznámou až do počátku 20. století, kdy se zrodila kvantová teorie. Elektron nekrouží v atomárním obalu podle představ klasické teorie. Chová se částečně jako vlna a částečně jako částice. Je nemožné definovat jeho polohu a rychlost. V atomárním obalu může mít jen určité hodnoty energie a různým energiím odpovídají různé pravděpodobnosti výskytu elektronu v obalu. Známe jen pravděpodobnosti výskytu, nikoli skutečnou polohu a rychlost. Toto zjištění je přímým důsledkem nekomutativnosti světa na malých škálách. Elektron může mezi energetickými hladinami přeskakovat a přitom buď musí přijmout nebo uvolnit foton s energií rovnou příslušnému rozdílu energetických hladin. Světlo souvisící s přeskoky elektronu v atomárním obalu má proto jen některé přesně definované vlnové délky. Tyto vlnové délky odpovídají spektrálním čarám. Tmavé čáry souvisí s pohlcením fotonu, světlé s emisí fotonu.

Spektrum

Fraunhoferovy absorpční čáry ve slunečním spektru.

Fotoelektrický jev. Pokud osvítíme světlem povrch kovu, může dojít k vytržení elektronu z atomárního obalu. Podle klasické teorie, ve které je světlo chápáno jako vlnění, by měl být tento jev závislý především na intenzitě dopadajícího světla. Čím vyšší intenzita, tím více vytržených elektronů. Jenže tak tomu není. Světlo se v tomto experimentu chová jako proud fotonů. Pokud foton nemá dostatečnou energii k vytržení elektronu, vytrhnout ho nemůže, byť by fotonů bylo sebevíc (nepomůže zvýšení intenzity). S jedním konkrétním elektronem vždy interaguje jeden konkrétní foton. Má-li dostatečnou energii, vytrhne elektron z obalu a zbytek jeho energie se projeví jako kinetická energie elektronu. Světlo se při fotoelektrickém jevu chová jako by šlo o jednotlivá kvanta energie, kterým říkáme fotony. Fotoelektrický jev objasnil Albert Einstein (1879–1955) v roce 1905 a v roce 1927 získal za tuto práci Nobelovu cenu za fyziku. Vyzkoušejte si základní princip fotoelektrického jevu v následujícím apletu. Vyzkoušejte si změnu vlnové délky světla a jeho intenzity. Také můžete měnit napětí na elektrodách, které ovlivní výsledný elektrický proud v obvodu. Zkuste nastavit napětí tak, aby se proud elektronů zcela zastavil. Povolte spuštění apletu v Javě, kterou musíte mít nainstalovánu. Autorem apletu je Dr. Joe McCullough z Cabrillovy koleje v americké Kalifornii.

Aplet – fotoelektrický jev

Záření absolutně černého tělesa. Ideálem zářícího tělesa je tzv. absolutně černé těleso, ve kterém je záření vázáno na objem tělesa a jen nepatrná část je vyzařována povrchem. Takové jsou například hvězdy. Na konci 19. století bylo experimentálně známo, jakým způsobem tělesa září. Teoretické vysvětlení se ale nedařilo nalézt. Až v roce 1900 Planck uhodl správnou křivku pro intenzitu záření v závislosti na jeho frekvenci a po několika měsících se mu podařilo příslušný zákon odvodit i teoreticky, ovšem za předpokladu, že energie záření je kvantována. Záření nemůže mít libovolnou energii, energie je jakoby naporcována – vždy je násobkem základního balíčku neboli kvanta. Toto základní kvantum energie je závislé na vlnové délce (frekvenci) záření. Krátkovlnné záření má větší základní kvantum energie, dlouhovlnné menší (E0 = ħω). Planck chápal kvantování jako matematický předpoklad, který mu umožnil provést výpočet. Nepředpokládal, že by měl hlubší fyzikální smysl. Dnes víme, že energie elektromagnetického pole je skutečně kvantována, základní kvantum energie se projevuje jako částice, které říkáme foton.

Planckův zákon

Planckův vyzařovací zákon. Vlnová délka maxima vyzařování se s rostoucí
teplotou posouvá ke kratším vlnovým délkám.

Vlnově-částicová dualita. Objekty mikrosvěta se v některých případech chovají jako vlny, v jiných jako částice. Prvním příkladem může být již výše zmíněný fotoelektrický jev, při kterém se světlo chová jako částice. Existují i experimenty, při  kterých se elektrony nebo neutrony chovají jako vlny. Vlnových vlastností elektronu se využívá v elektronovém mikroskopu, vlnových vlastností neutronů v neutronové difraktometrii. Neutronové vlny se ohýbající se na krystalické mříži a z charakteristického ohybového obrazce lze usuzovat na vlastnosti krystalu.

Neutronová difraktometrie

Na pozadí krystalické struktury MOF5-4H2 je naměřený ohybový obrazec neutronů.
Zdroj: T. Yildirim, M. R. Hartman, NIST Center for Neutron Research.

 

 Význam Planckovy konstanty

 Kvantová teorie