Logo ČVUT

PLANCKOVA KONSTANTA – KE ČTENÍ

 Energie

 Experimenty, které vedly ke kvantové teorii

 Význam Planckovy konstanty

 Kvantová teorie

Kvantová teorie patří k jedněm z nejméně pochopitelných teorií, které lidé vytvořili. Přesto patří k těm nejúspěšnějším. Důvodem těžké pochopitelnosti je to, že kvantová teorie popisuje svět malých rozměrů, se kterým nejenom že nemáme žádné bezprostřední zkušenosti, ale ani nemáme vyvinuté receptory pro sledování dějů v mikrosvěte. Největší odlišností od našeho světa je nekomutativnost (AB není totéž, co BA). Změříte-li polohu a poté hybnost dostanete jiný výsledek, než kdybyste provedli měření v opačném pořadí. Nekomutativnost je základním principem kvantové teorie. Matematická stavba kvantové teorie musí využívat nekomutující objekty, například matice nebo diferenciální operace. Pro obě struktury je AB ≠ BA. Z vlastností těchto objektů se teprve zjišťuje, co je a co není v přírodě měřitelné a jaké má mikrosvět vlastnosti. Nekomutujícími teoriemi byla nejprve nahrazena klasická mechanika, později klasická elektrodynamika a nakonec klasická teorie elektromagnetického pole. Dnes existuje i úspěšná kvantová teorie slabé a silné interakce. Cílem tohoto textu není naučit Vás kvantovou teorii. To je možné jen za mnoho semestrů pilného studia specializovaných přednášek. Cílem je poukázat na některé zvláštnosti (z lidského hlediska) kvantového světa:

  • Dynamické proměnné mohou v mikrosvětě nabývat diskrétních i spojitých hodnost. Možné hodnoty se zjišťují z vlastností nekomutujících objektů, které v kvantové teorii nahrazují dynamické proměnné.
  • Objekty mikrosvěta nejsou částice ani vlny. V některých experimentech se systém chová podobně jako vlna, v jiných obdobně jako částice.
  • Dva stejně připravené experimenty mohou dát dva různé výsledky. Kvantová teorie nám předpovídá jen pravděpodobnost naměření určitého výsledku, za předpokladu, že provedeme mnoho opakovaných experimentů.
  • Objekty mikrosvěta mohou být ve více stavech naráz, hovoříme o tzv. superpozici stavů. Teprve aktem měření zaujme objekt jeden konkrétní stav.
  • Akt měření ovlivní měřený objekt. Objekt je po provedení měření v jiném stavu než před měřením. Kvantová teorie je jedinou teorií, jejíž součástí je měření samotné.
  • V přírodě nelze ani zvyšováním přesnosti měření získat veškeré informace o objektu. Nikdy nemůžeme současně určit například polohu a hybnost objektu. Zpřesnění jednoho měření vede na snížení přesnosti druhé veličiny. Jde o základní vlastnost přírody, kterou nelze naší snahou ovlivnit.
  • V mnoha systémech není nejnižší možná energie nulová, ale má nenulovou hodnotu. Příkladem může být harmonický oscilátor, kmity krystalů nebo energie vakua.
  • Kromě orbitálního momentu hybnosti (spojeného s rotačním pohybem objektu) mají objekty mikrosvěta ještě vnitřní moment hybnosti (tzv. spin), který se s orbitálním momentem skládá.

Pravděpodobnost výskytu objektu v harmonickém oscilátoru – aplet

Zřejmě nemáte správně nainstalován a nakonfigurován Java plugin.

Aplet simuluje kvantovou pravděpodobnost výskytu částice v harmonickém oscilátoru, poloha je na vodorovné ose. Jezdci nalevo si můžete volit zastoupení jednotlivých stacionárních stavů. Tlačítko RUN spustí časový vývoj. Nastavte si vhodnou rychlost animačního vlákna. Vyzkoušejte si zejména jeden vytažený jezdec – jde o stacionární stav, který se s časem nevyvíjí. Dva vytažené sousední jezdce – jde o kvazičástici přelévající se ze strany na stranu v zadaném potenciálu. Tlačítkem STOP animaci zastavíte a můžete ji krokovat podle nastaveného časového kroku. Autorem apletu je Ondřej Pšenčík (FEL ČVUT)