A B C D E F G H CH I J K L M N O P Q R S T U V W X Y Z Ostatní Vše Hledat
Kaczmarzova metoda
Kaczmarzova metoda – algebraická iterační metoda využívající operace s vektorovými poli a maticemi pro rekonstrukci obrazu původního skenovaného řezu objektem z jeho sinogramu.
Kadmium
Kadmium – Cadmium, měkký, lehce tavitelný, toxický kovový prvek. Slouží jako součást různých slitin a k povrchové ochraně jiných kovů před korozí. Vzhledem k jeho toxicitě je jeho praktické využití omezováno na nejnutnější minimum. Kadmium pohlcuje neutrony, proto se kadmiové tyče využívají v některých typech reaktorů k utlumení štěpné reakce. Kadmium bylo objeveno roku 1817 německým chemikem Friedrichem Stohmeyerem.
KAGRA
KAGRA – Kamioka Gravitational Wave Detector, tříkilometrový podzemní interferometrický detektor gravitačních vln, který byl vybudován v Japonsku v blízkosti neutrinového detektoru Super-Kamiokande. Jako první detektor na světě má chlazená koncová zrcadla. Po zprovoznění v únoru 2020 doplnil stávající detektory LIGO (USA) a Virgo (Itálie). Větší síť detektorů umožňuje vyšší přesnost lokalizace zdrojů gravitačních vln. Původní název detektoru byl LSGT (Large Scale Gravitational Wave Telescope).
Kalcit
Kalcit – krystalická forma uhličitanu vápenatého CaCO3 (vápenec), krystalizuje v trojklonné soustavě a v čisté formě je bezbarvý a průhledný. Jeho základní vlastností je dvojlom světla, při dopadu světelného paprsku na kalcit se uvnitř krystalu nešíří jeden lomený paprsek, ale dva – řádný a mimořádný. Tyto dva paprsky jsou polarizované v navzájem kolmých rovinách a šíří se pod různými úhly.
Kalibrační bosony
Kalibrační bosony – kvanta kalibračních polí. Pokud potenciály pole rozšíříme přesně definovaným způsobem o libovolnou skalární funkci Q, pole si zachovají svoje vlastnosti nezávisle na volbě této funkce, neboli na tzv. kalibraci. Žádná měřitelná veličina totiž nesmí záviset na výběru té či oné kalibrace, a to ani v klasické, ani v kvantové mechanice – příroda je kalibračně invariantní. Přechod od jedné kalibrace k jiné nazýváme kalibrační transformací. Tato transformace často vyžaduje přítomnost nových kompenzujících polí, která nazýváme kalibračními poli, kvanta těchto polí pak kalibračními bosony. Doplňování symetrií do rovnic je základním principem teorií vystavěných na transformačních symetriích fyzikálních zákonů – tzv. kalibračních teorií.
Kalibrační teorie
Kalibrační teorie – teorie vystavěné na transformačních symetriích fyzikálních zákonů. Základním principem je doplňování symetrií do rovnic popisujících přírodní děje. Nové členy musí splňovat určité transformační vlastnosti. Tyto tzv. kalibrační transformace často vyžadují přítomnost nových kompenzujících polí, která nazýváme kalibračními poli. Kvanta kalibračních polí nazýváme kalibrační bosony. Žádná měřitelná veličina totiž nesmí záviset na výběru té či oné kalibrace, a to ani v klasické, ani v kvantové mechanice – příroda je kalibračně invariantní.
Kalifornium
Kalifornium – Californium, desátý člen řady aktinoidů, šestý transuran, silně radioaktivní kovový prvek, připravovaný uměle ozařováním jader curia. Kalifornium bylo poprvé připraveno v roce 1950 bombardováním izotopu curia Cm 242 částicemi α v cyklotronu jaderné laboratoře kalifornské univerzity v Berkeley. Vznikl tak izotop Cf 245 s poločasem rozpadu 44 minut. Za jeho objevitele jsou označováni Glenn T. Seaborg, Stanley G. Thompson a Albert Ghiorso.
Kalypta nejmenší
Kalypta nejmenší – Mellisuga helenae (angl. Bee Hummingbird), řád Apodiformes (svišťouni), čeleď Trochilidae (kolibříkovití). Nejmenší pták na světě. Dospělý jedinec měří 5 centimetrů a váží pouhých 8 gramů. Průměrné rozpětí křídel je 3,25 cm. Nejmenší jsou pak i snesená vejce, která jsou menší než zrnko kávy. Vyskytují se na Kubě a ostrově Isla de la Juventud, pozorováni byly též na sousedních ostrovech Jamajka a Haiti.
Kambrium
Kambrium – nestarší období prvohor, probíhalo před 539 až 485 miliony lety. Došlo k prudkému vývoji života, jehož pozůstatky nacházíme zkamenělé v podobě různých fosilií. Období je pojmenováno podle latinského označení Walesu (Cambria), v němž se nachází mnoho geologických vrstev z této éry.
KamLAND
KamLAND – KAMioka Liquid scintillAtor Neutrino Detector, japonský scintilační detektor neutrin. Detektor tvoří průhledná nilonová koule o průměru 13 m, která je naplněna scintilační kapalinou detekující pozitrony vzniklé při záchytu antineutrina protonem. Koule je ponořena do oleje v ocelové nádobě o průměru 18 m. Na vnitřním povrchu nádoby je 1879 fotonásobičů. Vně nádoby je vnější Čerenkovův vodní detektor s 3 200 tunami vody. Celá konstrukce je tak třívrstvá. Detektor je primárně určen ke sledování antineutrin z jaderných reaktorů, dokáže ale sledovat i další druhy neutrin, například geoneutrina.
Kandela
Kandela – Kandela je jednotka svítivosti v daném směru, jejíž
velikost je definována světelnou účinností zdroje, který vysílá monochromatické záření frekvence 540×1012 Hz. Tato světelná účinnost byla zafixována na hodnotě Kcd = 638 s3 m−2 kg−1 cd sr.
Kaon
Kaon – mezon K, částice složená z jednoho kvarku a jednoho antikvarku. Jeden kvark/antikvark je z první generace (d či u) a druhý kvark/antikvark je podivný kvark s. Kaony v hojné míře vznikají v horních vrstvách atmosféry při její interakci s kosmickým zářením.
Kaony
Kaony – mezony K, skupina mezonů, které nesou kvantové číslo zvané „podivnost“ (angl. strangeness). Obsahují jeden podivný kvark nebo antikvark: K+ (us), K0 (ds/sd) a K− (su). Jejich hmotnosti jsou 493,667±0,013 MeV (K±) a 497,648±0,022 MeV (K0).
Kapkový model jádra
Kapkový model jádra – jádro je popisováno na základě analogie s kapkou kapaliny o poloměru přibližně R = 1,2×A1/3 fm. V rámci tohoto jednoduchého modelu dokážeme přibližně určit střední vazbovou energii na jeden nukleon pomocí semiempirické Weizsackerovy formule.
Kapsle
Kapsle – pod českým významem slova kapsle si každý můžeme představit různé věci. Asi nejčastější asociací bude malinká tobolka s léky, které se polykají. V kosmickém výzkumu může jít o malý kontejner s vesmírnou sondou. Ve fyzice, která se zabývá laserovou fúzí (na principu přímého i nepřímého ohřevu), pojmem kapsle rozumíme kuličku s fúzním palivem. Kapsle zde mají v průměru okolo 2 mm, povrch může být z plastu, berylia nebo i z hustých forem uhlíku (diamantu). Pod touto vrstvou může následovat vrstvička ledu (z deuteria a tritia). Většina objemu je pak vyplněna směsí deuteria a tritia v plynné formě. Povrchem do kapsle vede úzká trubička (2 až 10 μm) pro zavedení plynné směsi, náplně.
Kapton
Kapton – polyimidová fólie odolná velkým změnám teploty. Je relativně odolná různým druhům elektromagnetického záření, včetně rentgenového. Je stabilní v teplotním rozmezí 4 K až 673 K.
Karmánova hranice
Karmánova hranice – pomyslná hranice mezi zemskou atmosférou a kosmickým prostorem. Je definována jako výška, ve které rychlost potřebná k udržení hladiny letu pomocí vztlaku křídel dosahuje orbitální rychlosti. Hodnota Karmánovy hranice – 100 km – je definitorickým kompromisem mezi hodnotami kolísajícími podle aktuálního stavu ovzduší a parametrů letadla.
Katalog Abellův
Katalog Abellův – katalog bohatých kup galaxií, jehož základ vytvořil v roce 1958 americký astronom George Ogden Abell. Do současné podoby byl katalog doplněn v roce 1989. Katalog obsahuje 4073 kup s červeným kosmologickým posuvem menším než 0.2.
Katalog Arp-Madore
Katalog Arp-Madore – katalog neobvykle vypadajících galaxií na jižní obloze, který založil americký astronom Halton Christian Arp již v roce 1966. Tehdy do něho zařadil 338 galaxií. Později katalog rozšířila jeho partnerka Barry Madore, takže v roce 1987 obsahoval několik tisíc galaxií. Katalog nese jména obou astronomů.
Katalog Messierův
Katalog Messierův – katalog mlhavých objektů (většinu tvoří mlhoviny, galaxie a hvězdokupy). Poprvé byl vydán v roce 1781 francouzským pozorovatelem komet Charlesem Messierem, později byl doplněn o další objekty, dnes obsahuje 110 položek. Objekty katalogu jsou označeny písmenem M a číslem. Například M 31 je Velká galaxie v Andromedě.
Katalog NGC
Katalog NGC – New General Catalogue, katalog mlhovin hvězdokup a galaxií poprvé publikovaný dánským astronomem Johnem Dreyerem v roce 1888. Za jeho základ posloužila pozorování Williama Herschela. Objekty v tomto katalogu jsou označovány písmeny NGC a číslem. Velká galaxie v Andromedě má například označení NGC 244. Katalog obsahuje přibližně 8 000 objektů.
Katodová trubice
Katodová trubice – vakuovaná trubice s minimálně dvěma elektrodami. Po přivedení napětí na elektrody prochází katodovou trubicí elektrický proud. Toto zařízení bylo předchůdcem prvních elektronek.
Kauzalita
Kauzalita – příčinná souvislost. Pokud jsou dva děje v příčinné souvislosti (například zapálení rozbušky a exploze) musí ve všech souřadnicových soustavách nastat ve stejném pořadí. Kauzálně spojené děje jsou v takové vzdálenosti, že mezi nimi mohl proběhnout světelný signál.
Kavitace
Kavitace – fyzikální jev v kapalině, při němž vznikají, vyvíjejí se a zanikají kavitační bubliny (dutiny), které jsou vyplněny parami, případně plyny. Kavitační bubliny mohou vznikat například působením intenzivních ultrazvukových vln při poklesu tlaku pod tlak sytých par (při dané teplotě).
Keck
Keck – Dvojice obřích, pohyblivých segmentovaných dalekohledů. Jsou umístěny na hoře Mauna Kea na Havajských ostrovech v nadmořské výšce 4 123 metrů. Každé zrcadlo je tvořeno 36 šestiúhelníkovými segmenty a má průměr 10 metrů. Keckovy dalekohledy byly uvedeny do provozu v letech 1993 a 1996.
KEK
KEK – japonská Národní laboratoř pro fyziku vysokých energií. Založena byla v roce 1971, umístěna je v Tsukubě v Japonsku. Největším urychlovačem je KEKB (KEK B factory, továrna na B mezony obsahující b nebo anti-b kvarky). Jde o nesymetrický elektron-pozitronový kolider složený ze dvou prstenců (3,5 GeV a 8 GeV). Maximální tok částic je 1034 cm−2s−1. Obvod obou prstenců je 3 016 m.
Kelvin
Kelvin – Kelvin je jednotkou termodynamické teploty, jejíž
velikost je definována Boltzmannovou konstantou, která byla zafixována na hodnotě ksub>B = 1,380 649 × 10−23 s−2 m2 kg K−1.
KEMD
KEMD – kolejnicové elektromagnetické dělo.
Kepler
Kepler – sonda NASA z roku 2009 určená především pro vyhledávání exoplanet. Na palubě má Schmidtův dalekohled o průměru 1,5 metru a fotometr složený z 42 CCD čipů. Pozoruje fixní výsek oblohy v souhvězdí Labutě o průměru 12°. V roce 2012 byla mise prodloužena do roku 2016. V roce 2013 nastala porucha na mechanické části, kvůli které byla činnost dalekohledu dočasně pozastavena. Oprava se ukázala nemožná, proto došlo k výrazné modifikaci pozorovacích programů a mise s jinými než původně plánovanými objekty pokračuje dál.
Keplerovy zákony
Keplerovy zákony – tři zákony, které objevil v 17. století Johanes Kepler. Popisují pohyb planet v okolí Slunce: I. Planety se pohybují po elipsách, v jejichž ohnisku je Slunce. II. Plošná rychlost planet je konstantní (měřeno spojnicí planety a Slunce). III. Poměr druhých mocnin oběžných dob a třetích mocnin velkých poloos je pro všechny planety stejný.
Kerma
Kerma – kinetická energie nabitých částic uvolněných nenabitými částicemi v elementu látky, vydělená hmotností tohoto elementu. Jde o zkratku z anglického Kinetic Energy Released in MAterial.
Kerrův optický jev
Kerrův optický jev – při průchodu světla vhodným prostředím dochází ke změně indexu lomu látky úměrné intenzitě procházejícího světla. Důsledkem jsou nelineární jevy, například samofokusace svazku nebo nestability svazku. Jev poprvé popsal skotský fyzik John Kerr v roce 1875.
KHI
KHI – Kelvin-Helmholtz Instability. Nestabilita rozvíjející se na rozhraní dvou prostředí s různou rychlostí (například vítr na vodní hladině). Někdy dochází k vytváření typických vírů.
Kibo (ISS)
Kibo (ISS) – japonský laboratorní modul připojený k Mezinárodní kosmické stanici v roce 2008.
Killingovo vektorové pole
Killingovo vektorové pole – zavádí se v diferenciální geometrii pro popis prostoročasových symetrií. Symetrie fyzikální soustavy je popisována lagranžiánem a vede k zákonům zachování určitých veličin (integrálů pohybu – především energie a hybnosti) i za použití křivočarých souřadnic a v zakřiveném prostoročase. Killingův vektor vyjadřuje složky nekonečně malé translace zachovávající délku (tzv. izometrie). Distribuce Killingova vektoru v každém bodě variety tvoří Killingovo vektorové pole infinitesimálních generátorů isometrií. Má-li prostoročas určité vlastnosti symetrie (např. sférickou, axiální nebo rovinnou) vyjádřené existencí příslušných Killingových vektorů, potom lze sestrojit vektor, pro který platí zákon zachování kovariantní hodnoty hybnosti, počítané v souřadnicové bázi. Podle toho, zda je Killingův vektor časového nebo prostorového typu, to lze interpretovat jako zákon zachování energie nebo hybnosti.
Kilogram
Kilogram – Kilogram je jednotkou hmotnosti, jejíž velikost je
definována Planckovou konstantou, která byla zafixována na hodnotě h = 6,626 070 15 × 10−34 m2·kg·s−1.
Kinematická viskozita
Kinematická viskozita – vazkost. Udává poměr mezi tečným napětím a prostorovou změnou rychlosti způsobenou vnitřním třením ve směru kolmém na proudění skutečné kapaliny.
Kineziny
Kineziny – třída motorických proteinů v eukaryotických buňkách (buňkách obsahujících jádro a jiné organely oddělené membránami). Pomocí kráčivého pohybu po orientovaných lineárních trubicovitých mikrotubulech za hydrolýzy ATP realizují nitrobuněčné pohyby například při dělení buněk či transportu vakuol.
KISS
KISS – KEK Isotope Separation System, hmotový spektrometr pro separaci izotopů těžkých prvků umístěný v japonské laboratoři KEK. Slouží k výzkumu podmínek, za nichž těžké prvky, jako je například zlato a platina, vznikají, zejména v procesech explozí supernov nebo při splynutí dvou neutronových hvězd.
KIT
KIT – Karlsruhe Institute of Technology, jedna z největších výzkumných univerzit v Německu. Univerzita vznikla v roce 2009 sloučením Karlsruhské univerzity (založené v roce 1825) a Karlsruhského výzkumného centra (založeného v roce 1956). Z KIT a jejích předchůdců vzešlo šest nositelů Nobelových cen. Podle citačního indexu jde o šestou nejvýznamnější evropskou univerzitu. Příkladem vědeckých aktivit může být spektrometr KATRIN, který se pokouší změřit hmotnost neutrin.
Kladný kanál
Kladný kanál – kanál, který se v úvodní fázi blesku vytvoří ze země proti krokovému kanálu přicházejícímu z oblaku. Kladný kanál je dlouhý maximálně 50 metrů. Po jejich spojení vznikne vodivá cesta pro hlavní výboj, který nejprve přichází z oblaku k zemi a je následován zpětným výbojem ze země k oblaku.
Klasické objekty Kuiperova pásu
Klasické objekty Kuiperova pásu – objekty nacházející se za oběžnou dráhou Pluta. Někdy se označují Cubewana, podle největšího zástupce této skupiny. Jejich dráhy jsou téměř kruhové, mají jen nepatrnou excentricitu.
Klatrát
Klatrát – krystalická sloučenina vzniklá vřazením cizí molekuly do dutiny krystalové mříže hostitelské látky.
Klatráty
Klatráty – krystalické sloučeniny vzniklé vřazením cizí molekuly do dutiny krystalové mříže hostitelské látky.
Kleinův paradox
Kleinův paradox – fyzikální jev, který v roce 1929 předpověděl švédský fyzik Oskar Klein. Jeho teorie popisuje chování rychle se pohybujících elektronů v kvantové jámě. Elektron je z pohledu klasické fyziky například uvězněn uvnitř kvantové tečky. Z pohledu fyziky kvantové sice může „protunelovat“ ven, avšak čím vyšší a silnější bariéru použijeme, tím menší je pravděpodobnost takového procesu. Klein vyslovil teorii, že pokud by rychlost elektronu byla dostatečně vysoká, ani libovolně silná bariéra elektronu v úniku nezabrání. Soudilo se, že tyto podmínky jsou možné jen například v blízkosti černých děr. Avšak s objevem grafenu je poměrně reálné, že tento jev bude pro kvazičástice ověřen za vynaložení mnohem menší energie, a to již v poměrně blízké budoucnosti.
Klon
Klon – v biologii původně populace geneticky identických jedinců, později byl tento termín používán i pro jedince uměle vytvořené
genetické kopie, v informatice kopie dat či částí kódu reprezentující vlastnosti a chování.
KLT-40
KLT-40 – ruský jaderný reaktor využívaný na ledoborcích a na ruské obchodní lodi Sevmoput. Jde o tlakovodní reaktor s výkonem 35 MW. Jako palivo slouží obohacený uran 235. Varianta KLT-40S bude sloužit na ruských plovoucích jaderných elektrárnách, které budou osazeny dvěma reaktory.
Klystron
Klystron – zařízení využívané jako zesilovač mikrovlnných a radiových frekvencí. Energii získávají vlny ze svazku elektronů emitovaných z tepelné katody. Přístroj vynalezli bratři Russell a Sigurd Varianovi v roce 1937.
KMOS
KMOS – spektrograf dalekohledu VLT určený pro pásmo K (0,8÷2,5 μm). Jeho název vznikl z anglické zkratky „K-band Multi Object Spectrograph“. Spektrograf je součástí jednotky UT1 dalekohledu VLT a dokáže zpracovat signál z 24 zdrojů naráz.
Knock-out/knock-in
Knock-out/knock-in – vyřazení nebo naopak zařazení aktivního genu do organizmu.
Kobalt
Kobalt – Cobaltum, namodralý, feromagnetický, tvrdý kov. Používá se v metalurgii pro zlepšování vlastností slitin při barvení skla a keramiky a je důležitý i biologicky. Kov, který byl součástí rud využívaných k barvení skla, objevil roku 1735 švédský chemik George Bradnt.
Kód
Kód – způsob zápisu informací, který každému znaku přiřazuje symbol. Například Morseova abeceda.
Kodaňská interpretace
Kodaňská interpretace – nejpřijímanější interpretace kvantové mechaniky. Opírá se o nedeterminističnost mikrosvěta a pravděpodobnostní přístup. Před měřením je systém v superpozici stavů. V průběhu měření systém přejde do jednoho ze stavů této superpozice.
Kodžiki
Kodžiki – nejstarší dochovaná japonská kronika. Dokončena byla v roce 712. Vypráví celou tehdejší historii Japonska, od mýtického stvoření ostrovů až po několik generací prvních císařů. Dlouho byla pokládána za nejdůležitější zdroj historických informací o starověkém Japonsku.
Kofaktor
Kofaktor – součást složených enzymů, neaminokyselinová skupina, která je nezbytně nutná pro funkci daného enzymu. Na ten se může vázat jak kovalentně, tak nekovalentně. Struktura kofaktorů je značně různorodá.
Kognitivní funkce
Kognitivní funkce – schopnost poznávat okolí, reagovat a zvládsat úkoly. Jde o paměť, koncentraci, pozornost, zpracování informací, pohotovost, ale i vyjadřování, prostorovou orientaci atd.
Koherence
Koherence – situace, při které je fázový rozdíl interferujících vln z daného zdroje či objektu v určitém bodě prostoru konstantní a nebo se pomalu mění v čase. Opakem koherence jsou nepravidelné a dostatečně rychlé změny fázového rozdílu interferujících vln. Ideální koherence nelze nikdy dosáhnout.
Kohezní síla
Kohezní síla – přitažlivá síla mezi stejnými molekulami, která je způsobena nerovnoměrným rozložením náboje v molekule a jeho prosakováním mimo molekulu. Nevyrovnané kohezní síly na povrchu kapaliny způsobují povrchové napětí.
Kolaps vlnové funkce
Kolaps vlnové funkce – je-li kvantový systém v superponovaném stavu, nemůžeme jeho stav přímo zjistit. Při měření v určité bázi si systém náhodně vybere některý z bázových stavů a skokem do něj přejde. Říkáme, že jeho vlnová funkce zkolabovala. Například měření na stavu |0>+|1> způsobí s 50 % pravděpodobností přechod systému do stavu |0> a se stejnou pravděpodobností do stavu |1>.
Kolider
Kolider – urychlovač, ve kterém jsou dva urychlené svazky částic nasměrovány proti sobě. Jiným užívaným systémem je namíření svazku na nepohyblivý terč.
Koma
Koma – plynný obal jádra komety, vzniká při přiblížení komety ke Slunci. Koma může mít rozměry stovek až tisíců kilometrů.
Koma (optická vada)
Koma (optická vada) – optická vada, při které se bodový objekt zobrazí jako útvar připomínající hlavu komety. Jde o formu nepravidelného astigmatismu, která není korigovatelná běžnými prostředky.
Kometa
Kometa – těleso malých rozměrů obíhající kolem Slunce většinou po protažené eliptické dráze s periodou od několika let po tisíce roků. Při přiblížení ke Slunci se vypařuje část materiálu jádra a kometa vytváří komu a eventuálně ohon. Jde o pozůstatky materiálu z doby tvorby sluneční soustavy. Dnes se nacházejí v Oortově oblaku za hranicemi sluneční soustavy, ve vzdálenosti 20 000÷100 000 au. Některé komety pocházejí i z bližšího Kuiperova pásu.
Kometa Tempel 1
Kometa Tempel 1 – kometa objevená v roce 1867 Ernestem Tempelem. Oběžná doba komety kolem Slunce je 5,5 roku, rozměry jádra 5×11 km.
Komplementární báze
Komplementární báze – doplněk dané báze do Watsonova-Crickova páru. Pro A je to v DNA T, v RNA U, pro C je komplementární G, pro G naopak C, pro T, případně U, je to A.
Komplementární domény
Komplementární domény – vzájemně se doplňující části molekul, přesně do sebe zapadající jako klíč do zámku či otisk do formy. Slouží k rozpoznávání na molekulární úrovni. Příkladem mohou být vlákna DNA tvořící dvojšroubovici, úseky t-RNA, zodpovědné za vytvoření charakteristického motivu trojlístku z původní lineární molekuly, aktivní oblasti antigenu a protilátky či signální molekuly a receptoru buněčné membrány.
Komplementární páry
Komplementární páry – vzájemně se doplňující dvojice částí molekul, které do sebe zapadají jako klíč do zámku nebo odlitek do formy. Umožňují samoorganizaci a vzájemné rozpoznávání na úrovni molekul.
Kompulzátor
Kompulzátor – kompenzovaný pulzní alternátor, typ zdroje elektrické energie. Uskladněná kinetická energie v rotujícím disku je z něj uvolňována ve formě energie elektrické. Kompenzací se myslí to, že zařízení má co nejmenší indukčnost, aby mohlo dodávat energii v co nejsilnějších a zároveň nejkratších pulzech. Používá se jako zdroj energie pro kolejnicová elektromagnetická děla.
Komutace
Komutace – symetrická vlastnost objektů vzhledem k zavedené operaci, platí například při běžném násobení nebo sčítání čísel: AB = BA, A+B = B+A. Svět na malých škálách nekomutuje, měření dvou veličin závisí na jejich pořadí. Znbsp;tohoto faktu plynou velmi odlišné vlastnosti mikrosvěta od makrosvěta.
Komutátor
Komutátor – operace, která vyjadřuje, nakolik dvě jiné matice komutují. Značí se [A, B] a vypočte se jako AB−BA. Je-li násobení matic A a B komutativní, vyjde nulová matice. V kvantové mechanice je možné měřit současně jen veličiny, jejichž operátory komutují. Je-li komutátor nenulový, platí relace neurčitosti.
Konce C a N
Konce C a N – označení konců polypeptidů či bílkovin; C-konec je zakončen karboxylovou skupinou, N-konec aminoskupinou.
Konfokální mikroskop
Konfokální mikroskop – druh optického mikroskopu, jehož výhodou je vyšší rozlišovací schopnost daná detekcí světla pouze z ohniskové roviny mikroskopu.
Konformní transformace
Konformní transformace – transformace prostoru, která zachovává úhly vektorů. Jinak řečeno, změna měřítka je při konformní transformaci ve všech směrech stejná.
Konjunkce
Konjunkce – planeta a Slunce mají stejnou ekliptikální délku neboli rektascenzi. Při horní konjunkci je Slunce mezi Zemí a planetou. U vnitřních planet (Merkuru a Venuše) může nastat také dolní konjunkce, při níž je planeta mezi Zemí a Sluncem.
Konstanta jemné struktury
Konstanta jemné struktury – jedna z fundamentálních konstant, popisuje intenzitu elektromagnetické interakce. Lze ji zapsat jako jednoduchou kombinaci α = e2/(4πε0ħc). Hodnota konstanty jemné struktury je přibližně 1/137. Dnes udávaná hodnota je (7,297 352 537 6 ± 0,000 000 005 0)×10−3.
Kontralaterální
Kontralaterální – ležící na opačné straně, postihující opačnou stranu. Například po mozkové příhodě může dojít ke kontralaterální obrně poloviny těla na opačné straně, než je ložisko mozkové příhody. Opakem je ipsilaterální, ležící na stejné straně.
Konvektivní vrstva
Konvektivní vrstva – vnitřní vrstva Slunce, která zasahuje až do hloubky 200 000 km pod povrchem. Energie se zde šíří prouděním, ve vrstvě jsou vzestupné a sestupné proudy a mnohé turbulentní oblasti. Vrstva rotuje diferenciální rotací, tj. rychlost rotace závisí na heliografické šířce.
Konvoluce
Konvoluce – matematická operace, která zobecňuje násobení matice vektorem na případ spojitých indexů. Matice přechází v tzv. konvoluční jádro, vektor se stane funkcí a sumace přejde v integraci. Při zpracování signálů působí konvolučního jádro (též konvoluční filtr či maska) na zdrojový signál. Výsledkem operace konvoluce je „násobení“ jednotlivých prvků zdrojového signálu s odpovídajícími prvky konvolučního jádra a následná sumace všech takto vzniklých dílčích výsledků.
Kopernicium
Kopernicium – silně radioaktivní kovový prvek s protonovým číslem 112, dvacátý transuran. Izotop 277 byl objeven v roce 1996 v Ústavu pro výzkum těžkých iontů v německém Darmstadtu. Patří do skupiny přechodových kovů.
Kórium
Kórium – roztavená směs štěpného materiálu vznikající při havarijním přehřátí jádra reaktoru. Obsahuje jaderné palivo, štěpitelné materiály, regulační tyče, části konstrukce reaktoru a produkty probíhajících chemických reakcí.
Korona
Korona – atmosféra Slunce, v níž pohyb částic dominantně ovlivňuje gravitace a magnetické pole. Hranice mezi koronou a slunečním větrem se nazývá Alfvénův povrch. Teplota korony dosahuje až milionů stupňů Celsia, pravděpodobně je korona ohřívána rozpadem plazmových vln a lokálními rekonekcemi (přepojováním) magnetických siločar. K korona (kontinuum) je způsobena rozptylem slunečního světla na volných elektronech.
F korona (Fraunhoferova) je způsobena rozptylem slunečního světla na prachových částicích padajících z meziplanetárního prostoru na Slunce, charakteristické jsou absorpční čáry. E korona (emisní) jsou emisní čáry způsobené přechody ve vysoce ionizovaných kovech. Tyto čáry jsou možné jen za vysokých teplot milionů kelvinů.
Koronální díry
Koronální díry – oblasti Slunce s otevřenými siločarami, podél nichž uniká plazma do slunečního větru. Korona je v těchto místech chladnější a méně hustá než v okolí. V koronálních dírách je minimální množství uzavřených magnetických siločar, chybí zde proto magnetické dipóly. V ultrafialovém a rentgenovém oboru jsou koronální díry tmavé.
Koronograf
Koronograf – původně přístroj k pozorování koróny Slunce, ve kterém je vlastní povrch Slunce zakryt, aby nerušil pozorování. Koronograf se používá i k pozorování okolí hvězd. Samotná hvězda je zakryta a koronograf zobrazuje její okolí, například protoplanetární disky nebo planety.
Koronograf vírový
Koronograf vírový – koronograf, v němž se fázový posun vytvořený maskou mění v azimutálním směru.
Korónový výboj
Korónový výboj – druh elektrického výboje v plynech. Vzniká na ostrých hranách elektrod, kde je díky malému poloměru křivosti generováno silné elektrické pole. Samotný výboj hoří jen v okolí těchto hran a dále do prostoru se elektrický náboj přenáší jen za pomoci volných nosičů náboje bez další ionizace a emise záření. Korónový výboj může před bouřkou vznikat na ostrých hranách střech nebo hromosvodů jako tzv. Eliášův oheň. Vzniká také na sloupech vysokého napětí, kde slyšíme jeho projevy jako známé sršení.
Kosmická krystalografie
Kosmická krystalografie – jde o způsob zobrazování konečné (kompaktní) topologie za pomoci vyplnění prostoru opakujícím se základním útvarem. Jde o podobný proces jako skládání krystalu z elementárních opakujících se buněk.
Kosmické struny
Kosmické struny – hypotetické lineární gravitační objekty, které by měly vznikat v raných fázích vesmíru jako topologické defekty při narušení symetrie.
Kosmické záření
Kosmické záření – proud částic nejrůznějšího původu přilétající z vesmíru. Při interakci s atmosférou vzniká sprška milionů i miliard částic. Nejenergetičtější částice kosmického záření, které se dosud podařilo detekovat, mají energie až 1020 eV. Sprška z takové částice zasáhne na zemském povrchu mnoho desítek km2. Tak energetická částice se objeví přibližně jednou za sto let. Kosmické záření je majoritním zdrojem antihmoty na naší planetě. Může vznikat v supernovách, pulzarech, aktivních galaktických jádrech, atd. Naprostá většina částic kosmického záření, okolo 88 %, jsou protony, přibližně 10 % jsou jádra hélia (alfa záření), 1 % elektrony a pozitrony a 1 % těžké prvky. Kosmické záření má naprosto nejširší spektrum energií ze všech dodnes známých jevů. Mnohé částice, které se dnes vědci pokoušejí nalézt v moderních urychlovačích, se mohou nacházet právě v kosmickém záření. Kosmické záření bylo objeveno v roce 1912 rakouským fyzikem Victorem Hessem při balónových experimentech ve výšce až 5 300 metrů. S rostoucí výškou stoupala ionizace atmosféry, a tím byl prokázán kosmický původ záření. Za objev získal Hess v roce 1936 Nobelovu cenu za fyziku.
Kosmodrom Vandenberg
Kosmodrom Vandenberg – Kosmodrom nedaleko stejnojmenné kalifornské vojenské základny. Její severnější poloha a zároveň vhodné proudění v atmosféře z ní dělá vhodný kosmodrom pro vypouštění vědeckých družic, které je třeba usadit na polární dráhu.
Kosmografie
Kosmografie – mapování vesmíru nejrůznějšími prostředky. Donedávna šlo zejména o 3D mapy založené na přehlídkovém snímání oblohy prováděném na základě kompilace dat pořízených satelitními observatořemi a projekty obdobnými SDSS. Základ tvoří fundamentální katalogy. Přesnost astronomických map klesá v čase na obě strany od data pořízení mapy a v prostoru se vzdáleností od místa pozorovatele. V současnosti se postupně přechází na časoprostorová zobrazení, tedy 4D mapy.
Kosmologická konstanta
Kosmologická konstanta – člen v Einsteinových rovnicích obecné relativity, který je úměrný metrickému tenzoru (Λgμν). Albert Einstein ho zavedl v roce 1917. Jeho účelem bylo, aby rovnice poskytovaly stacionární řešení. Po objevu expanze vesmíru v roce 1929 se tento člen jevil jako zbytečný. Moderní kosmologie o něm opět uvažuje v souvislosti s popisem zrychlené expanze vesmíru. Hodnota Λ odhaduje na Λ ~ 2×10−52 m−2.
Kosmologické vzdálenosti
Kosmologické vzdálenosti – vzhledem k nejistotám vznikajícím při měření velkých – kosmologických – vzdáleností, neudávají se velké vzdálenosti v obvyklých délkových mírách, jako jsou světelné roky nebo parseky. Na velkých vzdálenostech lze změřit výhradně vlastnosti světla vzdálených zdrojů, tedy jasnost a spektrum. Za určitých předpokladů lze tyto vlastnosti interpretovat jako vlastnosti vzdáleností ovlivněné – např. čím je zdroj dál, tím rychleji by se od nás měl díky Hubblově toku vzdalovat. Jelikož je ale rychlost vzdalování veličina přímo měřitelná a Hubblova konstanta je jen veličina odvozená na základě mnoha nejistých předpokladů, udávají se velmi velké vzdálenosti v kosmologických textech pro jistotu jen v hodnotách změřeného červeného posuvu spektrálních čar, popř. z něj odvozené rychlosti vzdalování. Odpadá tak pro budoucí interpretace nutnost zpětného zjišťování metody, s jakou byl červený posuv na vzdálenost přepočítán a jaké předpoklady byly brány pro výpočet v úvahu.
Kosmologický parametr
Kosmologický parametr – η, podíl počtu baryonů a počtu fotonů, přibližně 6×10−10.
Kosmologický posuv
Kosmologický posuv – posuv spektrálních čar k červenému konci spektra díky rozpínání vesmíru. Při rozpínání dochází nejen ke vzájemnému vzdalování galaxií, ale i k prodlužování vlnových délek záření. Spektrum vzdálených objektů ve vesmíru se tak jeví posunuté směrem k červené až infračervené oblasti. Kosmologický červený posuv je definován předpisem z = (λ − λ0)/λ0, kde λ0 je vlnová délka spektrální čáry v okamžiku vyslání paprsku, λ je vlnová délka téže spektrální čáry v okamžiku zachycení paprsku. Malé kosmologické červené posuvy lze interpretovat pomocí Dopplerova jevu. U velkých posuvů závisí vzdálenost objektu na parametrech expanze vesmíru (Hubbleově konstantě, křivosti, procentuálním zastoupení temné energie atd.) a není jednoduché z naměřeného kosmologického posuvu vzdálenost přesně určit. Proto se většinou časové období udává pouze hodnotou naměřeného kosmologického posuvu.
Kosmologický princip
Kosmologický princip – vesmír vypadá ve všech svých místech stejně, je homogenní a izotropní. Expanze vesmíru probíhá ze všech jeho bodů, v každém místě uvidíme vesmír expandující právě od nás. Kosmologický princip vede na expanzi, při níž je rychlost vzdalování objektů úměrná jejich vzdálenosti.
Kosmologie
Kosmologie – nauka o vesmíru jako celku, o jeho struktuře, minulosti a budoucnosti. Slovní základ této vědecké disciplíny pochází z řečtiny. Slovo „kosmos“ v tomto jazyku znamená svět, ale také řád, eleganci a krásu. Stejný slovní základ má kosmetika. Současné pozorovací možnosti posunuly kosmologii do nejbouřlivěji se rozvíjejících vědeckých disciplín. K největším problémům současné kosmologie patří nejasnosti kolem podstaty temné hmoty a temné energie, které by měly být největší součástí vesmíru. Naopak jsou relativně dobře prozkoumány poslední fáze Velkého třesku.
Koutový odražeč
Koutový odražeč – pasivní zařízení schopné odrazit dopadající paprsek zpět ke zdroji. Je tvořen třemi navzájem kolmými zrcadly.
Kovalentní vazba
Kovalentní vazba – chemická vazba vznikající při sdílení elektronů dvěma atomy či molekulami.
Kovové sklo
Kovové sklo – též amorfní nebo metalické sklo. Chemicky se jedná o kovy nebo slitiny kovů, ale na rozdíl od běžného stavu jednotlivé atomy neobsazují vrcholy krystalové mřížky, ale vytvářejí neuspořádaný stav připomínající podchlazenou kapalinu.
Kovový vodík
Kovový vodík – forma vodíku, která vzniká za vysokých tlaků, kdy se elektronové orbitaly překrývají a elektrony volně putují látkou. Kovový vodík byl poprvé připraven v roce 1996 v Lawrencově národní laboratoři za tlaku 140 GPa a teploty 3 000 K. Předpokládá se, že může být součástí nitra některých obřích planet.
KP
KP – kontrolované pásmo se zdrojem ionizujícího záření, zpravidla stavebně oddělená oblast, která se vymezuje všude tam, kde by efektivní dávka mohla být vyšší než 6 mSv/rok nebo kde by ekvivalentní dávka mohla být vyšší než 3/10 limitu ozáření pro oční čočku, kůži a končetiny, nebo v pracovním místě, kde lze očekávat průměrný roční příkon dávkového ekvivalentu z ozáření při běžném provozu zdroje ionizujícího záření vyšší, než je 2,5 µSv/h.
Kp index
Kp index – logaritmická míra fluktuací vodorovné složky geomagnetického pole vzhledem
k jeho klidovému stavu. Tento index je integrálně počítán přes tříhodinový interval, nabývá
hodnot 0 až 9.
KPNO
KPNO – Kitt Peak National Observatory. Observatoř byla založena v roce 1958, leží 90 km jihozápadně od Tusconu. Observatoři patří tři velké dalekohledy a hostí 19 dalších dalekohledů a dva radioteleskopy různých organizací.
Krása
Krása – bottomness (někdy beauty), kvantové číslo udávající počet b kvarků (bottom) ve složené částici.
Krebsův cyklus
Krebsův cyklus – cyklický metabolický proces v mitochodriích buněk. Oxiduje acetylová rezidua na oxid uhličitý CO2. Je pojmenován podle německo-anglického lékaře sira Hanse Adolfa Krebse (1900–1981). Někdy se mu říká citrátový cyklus.
KREEP
KREEP – měsíční hornina, která je bohatá na draslík (K), vzácné zeminy (RRE – Rare Earth Elements) a fosfor (P). Kromě nich obsahuje také vysoké koncentrace uranu a thoria. Kvůli svému složení při tuhnutí prvotního oceánu magmatu nemohla krystalizovat a díky své nízké hustotě zůstala u povrchu.
Křemík
Křemík – polokovový prvek, hojně se vyskytující v zemské kůře. Slouží jako základní materiál pro výrobu polovodičových součástek nebo položek pro pěstování nanostruktur. Oxid křemičitý je základní surovina pro výrobu skla a významná součást keramických a stavebních materiálů. Objev křemíku je připisován švédskému chemikovi J. Jacobu Berzeliovi (1824).
Křída
Křída – poslední druhohorní období, které započalo před 145 miliony lety a skončilo před 65 miliony lety. Je charakteristické rozsáhlými křídovými pánvemi. Období poprvé definoval belgický geolog Jean Baptiste Julien d'Omalius d'Halloy (1783–1875) v roce 1822.
Kritická hustota
Kritická hustota – pojem z Fridmanových modelů. Vesmír s nižší hustotou než kritickou je otevřený a bude expandovat i v libovolné budoucnosti. Vesmír s vyšší hustotou je uzavřný a v budoucnu by měl začít kolabovat. Tento pojem byl zaveden v době, kdy nebyla známa existence temné energie ve Vesmíru.
Kritický bod
Kritický bod – koncový bod rovnovážné křivky mezi párou a kapalinou. Nad kritickým bodem nelze plyn zkapalnit pouhým působením tlaku. Hranice mezi oběma fázemi se stírá. Pro vodu má kritický bod hodnoty 374 °C, 22 MPa.
Krokový kanál
Krokový kanál – prostředí, kterým jsou vedeny elektrony při bleskovém výboji z mraku k Zemi. Krokový kanál vzniká postupně jako série jasných úseků, každý z nich je dlouhý přibližně 30 metrů a trvá méně než mikrosekundu. Další úsek se objeví přibližně po 50 mikrosekundách. Celý krokový kanál existuje kolem jedné setiny sekundy a k zemi se pohybuje rychlostí 300 kilometrů za hodinu. Jakmile se krokový kanál přiblíží k zemi, objeví se proti němu kladný kanál vystupující ze země.
Krtek
Krtek – zviřátko podzemní, dětmi idealizované do plyšákovité podoby, ve skutečnosti je slepé, nevzhledné až odpudivé.
Kryogén
Kryogén – předposlední perioda starohor, probíhala před 720 až 635 miliony lety. Došlo k výraznému zalednění celé planety. Před kryogénem bylo období velkého bombardování (častých dopadů meteoroidů a planetek), po kryogénu následovalo období ediakara s výrazným oteplením, které přineslo rychlou evoluci druhů.
Kryovulkanizmus
Kryovulkanizmus – druh sopečné činnosti, při které dochází k výronům chladné hmoty. Na rozdíl od vulkanizmu při kryovulkanizmu sopky chrlí látku při velice nízkých teplotách.
Kryptoanalýza
Kryptoanalýza – věda zabývající se metodami zjištění původní informace ze zašifrované bez znalosti klíče. Slovo pochází z řečtiny: kryptós je skrytý a analýein znamená rozvázat, uvolnit.
Kryptografie
Kryptografie – věda zabývající se utajováním smyslu zpráv převodem do podoby, která je čitelná jen se speciální znalostí. Slovo pochází z řečtiny: kryptós je skrytý a gráphein znamená psát. Někdy je pojem obecněji používán pro vědu o čemkoli spojeném se šiframi a je alternativou k pojmu kryptologie.
Kryptologie
Kryptologie – věda o utajování zpráv ve všech formách zahrnující kryptografii a kryptoanalýzu. Slovo pochází z řečtiny: kryptós je skrytý a logos znamená původně slovo, v přeneseném smyslu vědění.
Krypton
Krypton – plynný chemický prvek, patřící mezi vzácné plyny. Je bezbarvý, bez chuti a zápachu, nereaktivní, téměř inertní. Chemické sloučeniny tvoří pouze vzácně s fluorem a kyslíkem. Krypton byl objeven v roce 1898 Williamem Ramsayem a Morrisem Traversem. Využívá se ve výbojkách, k datování hornin a dříve se jeden z jeho zářivých přechodů využíval v definici metru.
Krystalická mřížka
Krystalická mřížka – pravidelné, periodické uspořádání atomů takové, že rovnoběžným posunutím o celočíselný násobek základní periody získáme tutéž strukturu. Směry, ve kterých toto nastává v případě posunutí o základní periodu, nazýváme hlavní směry mřížky, roviny na tyto směry kolmé nazýváme krystalografickými rovinami. Další třídu symetrií získáme kromě posunutí také otočením. Rentgenovou difrakcí zřetelně odhalíme krystalovou strukturu, neboť stopy rentgenových paprsků odražených od povrchu zkoumané látky vytvoří na filmovém materiálu ohybový obrazec, charakteristický pro každý typ krystalové struktury.
Krystalizační jádra
Krystalizační jádra – malé zárodečné monokrystaly spojující se do větších celků. Vazby mezi krystalizačními jádry jsou slabší, než vazby mezi jednotlivými atomy v krystalizační mřížce.
Krystalová mříž
Krystalová mříž – pravidelné, periodické uspořádání atomů takové, že rovnoběžným posunutím o celočíselný násobek základní periody získáme tutéž strukturu. Směry, ve kterých toto nastává v případě posunutí o základní periodu, nazýváme hlavní směry mřížky, roviny na tyto směry kolmé nazýváme krystalografickými rovinami. Další třídu symetrií získáme kromě posunutí také otočením. Rentgenovou difrakcí zřetelně odhalíme krystalovou strukturu, neboť stopy rentgenových paprsků odražených od povrchu zkoumané látky vytvoří na filmovém materiálu ohybový obrazec, charakteristický pro každý typ krystalové struktury.
Krystaly
Krystaly – látky charakteristické pravidelným uspořádáním částic (atomů, molekul nebo iontů), z nichž jsou složeny. Rozlišujeme monokrystalické a polykrystalické látky. Polykrystaly se skládají z drobných monokrystalů – náhodně orientovaných zrn o velikosti od desítek mikrometrů až po milimetry, monokrystaly se uspořádávají dalekodosahově (s nenulovou korelací orientace i ve velké vzdálenosti). Vlastnosti polykrystalů jsou izotropní (tj. mají ve všech směrech uvnitř krystalu stejné vlastnosti), monokrystalické látky vykazují naopak anizotropii, která je jednak objektem výzkumu a jednak ji lze využít v mnoha technických aplikacích.
KSC
KSC – Kennedy Space Center, Kennedyho vesmírné středisko. Americká raketová základna, která byla vybudována na východním pobřeží Floridy na mysu Canaveral (poloostrov Merritt Island). Středisko patří americké NASA a letěla z něho do vesmíru většina amerických družic, sond a pilotovaných letů. Středisko má 17 000 zaměstnanců a zabírá plochu přes 500 km2.
KT vrstva
KT vrstva – tenká vrstva sedimentů oddělujících období křídy a třetihor bohatá na iridium. Byla objevena Walterem a Luisem Alvarezovými v roce 1980. Předpokládá se, že jde o pozůstatek po dopadu desetikilometrové planetky, která způsobila vyhynutí velkých plazů.
KTJ
KTJ – kolonie tvořící jednotky, mikrobiologický parametr udávaný v počtu kolonií na jednotku objemu. Měřený objem se liší pro různé typy bakterií.
Kuboktaedr
Kuboktaedr – mnohostěn s 8 trojúhelníkovými plochami a 6 čtvercovými plochami. Kuboktaedr má 12 identických vrcholů, v každém se setkávají 2 trojúhelníky, 2 čtverce a 24 stejných hran, z nichž každá odděluje trojúhelník od čtverce.
Kuiperův pás
Kuiperův pás – oblast malých těles za drahou Neptunu. Vnitřní okraj pásu se nachází ve vzdálenosti asi 30 a vnější asi ve vzdálenosti 500 astronomických jednotek od Slunce. Je „položen“; do roviny ekliptiky. Dnes známe tisíce objektů Kupierova pásu a předpokládá se, že existuje přes 100 000 objektů s velikostí větší než 100 kilometrů. Průměry těles nepřesahují (až na ojedinělé výjimky) 400 km. Celková hmotnost všech těles se odhaduje na 0,1 hmotnosti Země. Nejznámějším tělesem Kuiperova pásu je Pluto.
Kulminace
Kulminace – okamžik, kdy je nějaký astronomický objekt nejvýše (horní kulminace) nebo nejníže (dolní kulminace) nad obzorem.
Kulová hvězdokupa
Kulová hvězdokupa – systém obsahující statisíce až miliony hvězd, držený pohromadě gravitací. Hvězdy v kulových hvězdokupách neobsahují prakticky žádné těžší prvky, a jsou proto velmi staré, nezřídka 12 až 13 miliard roků. Vznikly z prvotního plynu – vodíku a hélia v zárodcích budoucích galaxií. Většina kulových hvězdokup, které pozorujeme, je součástí naší Galaxie. Nejsou vázány na plochý podsystém, ale na celé galaktické haló.
Kulový blesk
Kulový blesk – Zatím ne zcela objasněný jev, pravděpodobně koule z plazmatu objevující se při bouřkách. Kulový blesk má typicky 30 centimetrů v průměru a trvá po dobu několika sekund.
Kupy galaxií
Kupy galaxií – největší gravitačně vázané objekty ve vesmíru tvořené třemi hlavními složkami:
– stovkami galaxií obsahujícími hvězdy, plyn a prach,
– obrovskými mraky horkých plynů,
– temnou hmotou zatím neznámé povahy.
Galaxie se liší svou strukturou (spirální, eliptické, nepravidelné,…), vyzařovaným výkonem (neaktivní, radiové, Seyfertovy,…) a zejména svojí hmotností. Hmotnost je
miliardy až stovky miliard Sluncí.
Kutikula
Kutikula – nebuněčný obal některých živých organizmů, například hmyzu. Skládá se z povrchové jednovrstvé epikutikuly a vícevrstvé exokutikuly a endokutikuly.
Kvadratická gravitace
Kvadratická gravitace – třída alternativních teorií gravitace, které rozšiřují rovnice obecné relativity o druhou mocninu Ricciho skaláru (popisuje skalární křivost, v OTR je v první mocnině) a zúžení Weylova tenzoru (popisuje torzní a slapové jevy, OTR ho neobsahuje) se sebou samým. Jsou-li tyto členy rovny nule, přechází rovnice kvadratické gravitace v klasickou Einsteinovu obecnou teorii relativity (OTR).
Kvadratura
Kvadratura – vzájemná poloha vnějších planet, při níž je úhel planeta – Země – Slunce rovný 90°.
Kvadrupólová deformace
Kvadrupólová deformace – deformace tělesa, například atomového jádra, do tvaru elipsoidu. Jedná se o nejjednodušší typ deformace jádra, který se liší od sférického tvaru.
Kvantová gravitace
Kvantová gravitace – teorie pokoušející se spojit zákony kvantové mechaniky se současnou teorií gravitace, obecnou relativitou. Zdá se, že nejblíže cíli jsou tzv. teorie strun.
Kvantová interference
Kvantová interference – skládání amplitud pravděpodobnosti několika možností vývoje systému. Amplitudy se mohou vyrušit, potom hovoříme o destruktivní interferenci. Pravděpodobnosti dějů jsou druhou mocninou součtu amplitud pravděpodobností jednotlivých možností.
Kvantová nelokálnost
Kvantová nelokálnost – skutečnost, že kvantové objekty nemusí být lokalizované v jednom jediném místě. Například elektron se vyskytuje v celém atomárním obalu a známe jen pravděpodobnosti jeho výskytu, foton se vyskytuje v obou ramenech interferometru současně atd. Kvantová nelokálnost objektů mikrosvěta spolu se superpozicí a provázaností kvantových stavů patří k základním pilířům současných kvantových technologií.
Kvantová provázanost
Kvantová provázanost – kvantově korelovaný stav systému dvou a více částic, v němž nemá smysl mluvit o stavech jednotlivých složek. Například z provázaného stavu dvojice fotonů nelze vyjádřit stavy jednotlivých fotonů. Měřením provedeným na jedné částici se dozvíme ihned určitou informaci o částici druhé. Je to způsobeno tím, že mají společnou minulost. Někdy se také hovoří o propletených nebo entanglovaných stavech (z anglického entanglement). Provázané stavy se hojně využívají v kvantových technologiích, například v kvantových počítačích, při kvantové teleportaci, u kvantových senzorů a v kvantovém šifrování.
Kvantová superpozice
Kvantová superpozice – skutečnost, že se objekty mikrosvěta mohou nacházet ve více stavech naráz. Například elektron v atomárním obalu může mít současně dva energetické stavy, nebo může současně procházet dvěma otvory ve stěně. Pokud dva stavy představují fyzikálně realizovatelný stav systému, je vždy možná i superpozice těchto stavů. Teprve při aktu měření objekt „získá“ jeden konkrétní stav. Například hzpotetická kvantová kočka nemusí být jen živá, nebo mrtvá, může být i „obojí zároveň“. Pokud na kočce v tomto superponovaném stavu provedeme měření, najdeme ji buď živou, nebo mrtvou. Kvantová superpozice stavů je běžná pro kvantové objekty, například elementární částice nebo atomy. U makroskopických objektů komunikujících s okolím (kočka, člověk) je nemožná.
Kvantová tečka
Kvantová tečka – quantum dot, ohraničená oblast polovodiče o průměru jednotek až desítek nanometrů a výšce do deseti nanometrů, která je schopná vázat elektrony v důsledku nižší energie vodivostního pásu ve srovnání s okolním polovodičem. Tyto elektrony mohou nabývat pouze diskrétních hodnot energie. Jde vlastně o uměle vytvořenou kvantovou potenciálovou jámu modifikovatelné hloubky. Například v GaAs se dno vodivostního pásu nachází na nižší energetické hladině než dno vodivostního pásu AlGaAs. Obklopíme-li mikroskopický kousek GaAs (o velikosti několika nm) materiálem AlGaAs, vodivostní elektron uvnitř GaAs bude uvězněn v trojrozměrné potenciálové jámě, jejíž parametry se dají přesně nastavit při výrobním procesu. Kvantové tečky se využívají ve speciálních součástkách, které jsou schopny pracovat s jednotlivými elektrony či fotony.
Kvantová teleportace
Kvantová teleportace – děj navržený v roce 1993 Charlesem Bennettem a poprvé uskutečněný v roce 1997 v Innsbrucku Anthony Zeilingerem. Je založena na tenzorovém součinu Hilbertových prostorů (popisuje provázání – entanglement – stavů) a vzájemném vztahu různých bází (Bellovy stavy). Při kvantové teleportaci se přenášejí virtuální EPR (Einsteinovy-Podolského-Rosenovy) páry tzv. ebitů, vytvořené z entropického vakua. Konkrétní informační proces pak lze popsat pomocí analogie Feynmanových diagramů s ebity a antiebity. V reálných teleportačních obvodech pro kvantové počítače může hrát úlohu ebitu například spin elektronu obsazujícího orbitální stav v polovodičové kvantové tečce (spintronika).
Kvantová teorie pole
Kvantová teorie pole – popis interakce založený na kvantových principech, tj. na nekomutativnosti základních operací v mikrosvětě. Kvantová teorie pole nahrazuje silové působení polními částicemi. Tyto částice jsou virtuální a nikdy nemohou skončit v detektoru, působí jen mezi dvěma interagujícími částicemi. Jako první prototyp kvantové teorie pole se vyvinula ve 30. letech 20. století kvantová elektrodynamika, později se objevila teorie slabé a silné interakce. Jediná gravitace je popsána jinak – za pomoci obecné relativity.
Kvantové číslo, hlavní
Kvantové číslo, hlavní – značíme n, čísluje energii systému En. Hodnota energie závisí na průběhu potenciální energie. Energie je proto jinak kvantována ve vodíkovém atomu, jinak v harmonickém oscilátoru, kvantové jámě, atd.
Kvantové číslo, magnetické
Kvantové číslo, magnetické – značíme m, čísluje projekci momentu hybnosti do libovolného směru. Ta může nabývat celistvých násobků Planckovy konstanty ħ, tedy Lk = mħ.
Kvantové číslo, vedlejší
Kvantové číslo, vedlejší – značíme l, vyjadřuje maximální možnou projekci momentu hybnosti do nějaké osy v jednotkách redukované Planckovy konstanty. U atomu vodíku nabývá vedlejší kvantové číslo hodnot 0, 1, ... n–1. Časté je označování vedlejšího kvantového čísla písmeny s, p, d, f..., které odpovídají hodnotám 0, 1, 2, 3... Velikost momentu hybnosti (nikoli projekce) je dána vztahem
L2 = l(l+1)ħ2.
Kvantový bit, qubit
Kvantový bit, qubit – kvantová verze bitu (jednotky informace). Klasický bit je buď ve stavu |0〉, nebo |1〉. Qubit zahrnuje navíc všechny superpozice α|0〉+β|1〉. Konkrétní hodnotu |0〉, nebo |1〉 nabude teprve v okamžiku měření.
Kvantový Hallův jev
Kvantový Hallův jev – pozorujeme ve dvoudimenzionálních strukturách, kdy za nízkých teplot a silných magnetických polí elektrická vodivost materiálu nabývá celočíselných násobků e2/h s velmi vysokou přesností. V tomto stavu vodivost nezávisí na jiných vlastnostech materiálu.
Kvantový počítač
Kvantový počítač – počítač využívající k zápisu informace kvantově mechanické vlastnosti částic, například spin elektronů, spin atomových jader nebo jiné vlastnosti kvantově se chovajících objektů. Kvantový počítač nese současně informaci o všech možných hodnotách kvantované veličiny, a tím provádí paralelně výpočet všech možností, které mohou nastat. Výpočet je mnohonásobně efektivnější než u klasického počítače. Základní jednotka informace se nazývá qubit (kvantový bit). Zatím jsou kvantové počítače ve stádiu ověřování principů.
Kvantový stav
Kvantový stav – soubor pozorovatelných parametrů kvantového systému, kterými je systém plně charakterizován. Popis stavu musí respektovat omezení kvantové mechaniky na současnou měřitelnost či neměřitelnost veličin. Například základní energetický stav atomu značíme symbolem |S>, vakuový stav symbolem |0>, živou kočku označíme |Ž>, mrtvou kočku |M> a podobně. Kvantový stav je zpravidla charakterizován sadou kvantových čísel a je matematicky vyjádřen tzv. vlnovou funkcí (prvkem Hilbertova prostoru stavů).
Kvark gluonové plazma
Kvark gluonové plazma – Další skupenství hmoty, kdy se kvarky a gluony začnou chovat jako volné částice. Tohoto stavu se dosahuje velmi vysokou teplotou, při které jsou průměrné vzdálenosti mezi kvarky menší než 10-15 m. Poprvé bylo pozorováno v 90. létech minulého století, jeho objev byl oznámen 10. února 2000.
Kvarky
Kvarky – částice, ze kterých jsou tvořeny těžké částice s vnitřní strukturou (hadrony). Hadrony dělíme na baryony složené ze tří kvarků (například protony a neutrony) a na mezony tvořené kvarkem a antikvarkem (například piony). Kvarky se dělí do tří generací, první tvoří kvarky „d“ (down) a „u“ (up), druhou kvarky „s“ (strange) a „c“ (charm) a třetí kvarky „b“ (bottom nebo beauty) a „t“ (top nebo truth). Kvarky mají neceločíselné (třetinové a dvoutřetinové) elektrické náboje. Jsou také nositeli barevného náboje silné interakce.
Kvazar
Kvazar – objekty objevené v roce 1963, mají malé úhlové rozměry (<1″) a obrovský zářivý výkon v celém spektru (1035 až 1040 W). Kvazary se nacházejí ve velkých kosmologických vzdálenostech, jejich světlo je poznamenáno rozpínáním vesmíru a spektrum je výrazně posunuté k červenému konci. Energetická bilance odpovídá vyzařování celých galaxií. Jde o zárodky budoucích galaxií, v jejichž středu se nachází obří černá díra s charakteristickým výtryskem hmoty.
Kvazičástice
Kvazičástice – z místa na místo se přesouvající rozruch neboli excitace budící dojem pohybu skutečné částice. Příkladem mohou být postupně padající kostky domina, překlápějící se elementární spiny, šířící se vibrační kvantum v krystalu nebo excitace hustotní vlny elektronů.
Kvazikrystal
Kvazikrystal – krystaly s pětičetnou, desetičetnou či jinou symetrií, která vylučuje dokonalé periodické pokrytí roviny. Krystaly vytváření obrazce, které sice vypadají pravidelně, ale při bližším ohledání postrádají translační symetrii. Mohou mít rotační symetrii. Obrazce se nikdy neopakují. Izraelský fyzik Dan Shechtman poprvé kvazikrystaly pozoroval ve slitinách uhlíku s hořčíkem v roce 1982. V roce 2008 byl objeven první přírodní kvazikrystal v meteoritu ze sbírky italského Muzea přírodních věd ve Florencii.
Kvintesence
Kvintesence – hypotetické kvantové pole, které by mohlo být nositelem páté interakce, která se chová jako dynamická, časově se vyvíjející a prostorově nehomogenní forma energie vykazující tlak dostatečně záporný na to, aby urychlovala rozpínání vesmíru.
Kyselina mravenčí
Kyselina mravenčí – jednoduchá organická kyselina HCOOH, nacházející se v sekretech některých druhů hmyzu, například mravenců. Zředěná má příjemnou kyselou chuť.
Kyslík
Kyslík – Oxygenium, plynný chemický prvek, tvoří druhou hlavní složku zemské atmosféry. Je biogenním prvkem a jeho přítomnost je nezbytná pro existenci většiny živých organizmů na naší planetě. V atmosféře tvoří plynný kyslík 21 objemových %. Kromě obvyklých dvouatomových molekul O2 se kyslík vyskytuje i ve formě tříatomové molekuly jako ozon O3. Produkty hoření se nazývají oxidy, dříve kysličníky. Kyslík je třetím nejhojnějším prvkem ve vesmíru.
Kyslíkový efekt
Kyslíkový efekt – Oxygen Enhancement Ratio, OER. Jedním z významných radiobiologických faktorů je tzv. nepřímý účinek ionizujícího záření spočívající v radiační indukci kyslíkových radikálů, které následně napadají DNA a ničí živé buňky. Tento tzv. zesilující efekt kyslíku (zkráceně kyslíkový efekt) má často rozhodující vliv na úspěšnost protinádorové léčby ionizujícím zářením. Nádorové buňky však naneštěstí bývají často hypoxické, neboť nemají vybudované dostatečně robustní cévní zásobení. Nepřímý účinek ionizujícího záření je tak zasahuje paradoxně méně než okolní zdravé buňky. Po iradiaci se cévní řečiště zásobující nádor ještě více tromboticky uzavírá, což vede k větší hypoxii buněk nádoru a zpomalení jejich růstu, současně však i vyšší radiorezistenci.